We describe the use of a commercially available high content cell imaging algorithm (Cellomics Arrayscan Spot Detector) to quantify biliary excretion of the fluorescent probe substrate cholyl-l-lysyl-fluorescein (CLF) from rat hepatocytes cultured in collagen/matrigel sandwich configuration and to explore inhibition of this process by a variety of test compounds. The method provided robust, reproducible data. Twenty-nine pharmaceuticals inhibited biliary CLF efflux from hepatocytes and a broad range of potencies of inhibition were observed (IC50 values ranged between <1 and 794 µM). Thirteen drugs that inhibited CLF efflux also inhibited hepatocellular uptake of the probe substrate [(3)H]-taurocholate. Although no clear correlation between the potencies of inhibition of the 2 processes was evident, these data highlight the need to consider possible uptake transporter inhibition when interpreting hepatocyte CLF inhibition data. It has been reported that CLF is transported by MRP2. The CLF efflux inhibition data correlated closely with published data on inhibition by the drugs of the bile salt export pump (Bsep), which suggests that the tested drugs inhibit both Bsep and Mrp2. Calculation of the ratios between the maximum human plasma concentrations of the drugs and their CLF efflux inhibition IC50 values raised the possibility that for many, but not all, of them the in vitro effects may be functionally significant in vivo and that Mrp2 inhibition might be a drug-induced liver injury (DILI) risk factor. These data indicate that imaging hepatocyte CLF inhibition is a promising new method for quantification of biliary efflux inhibition by drugs, which could aid assessment of compound-related DILI risk.

Read more here:  Barber JA, Stahl SH, Summers C, Barrett G, Park BK, Foster JR, Kenna JG. Quantification of Drug-Induced Inhibition of Canalicular Cholyl-l-Lysyl-Fluorescein Excretion From Hepatocytes by High Content Cell Imaging. Toxicol Sci. 2015 Nov;148(1):48-59. 2015.