# Modulation of GABA<sub>A</sub> activity: Investigations in hiPSC-derived neuronal co-cultures and human ion channel assays

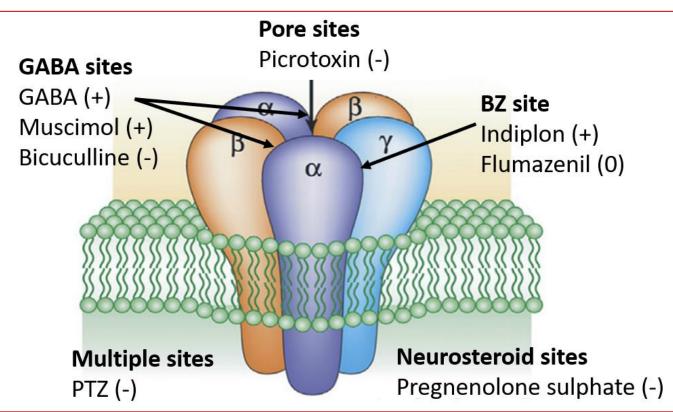


**B. Kelly¹**, K. Rockley¹, K. Jones¹, R. Roberts¹, M. Morton¹ *ApconiX, Alderley Edge, Cheshire, United Kingdom* 

#### INTRODUCTION

A balance between inhibitory neurotransmission and neuronal excitation is critical for normal brain function.  $\gamma$ -aminobutyric acid (GABA) is the most abundant inhibitory neurotransmitter, which acts on GABA<sub>A</sub> receptors. Perturbation of GABA<sub>A</sub> signalling by drug-induced inhibition and potentiation are common mechanisms producing seizure and sedation, respectively. The introduction of commercially available human induced pluripotent stem cell (hiPSC-) derived neurons facilitates the *in vitro* study of neuronal function and, in our work, the detection of seizure liability during drug discovery. It is known that GABA<sub>A</sub> antagonists such as picrotoxin increase neuronal firing and induce a seizure-like phenotype in hiPSC-derived neurons, however further characterisation of GABA<sub>A</sub> modulation within these cell models is lacking. This study aimed to address this by assessing the effects of a selection of GABA modulators on the electrical activity of hiPSC-derived neuronal co-cultures, and the ion flux of  $\alpha_1\beta_2\gamma_2$ -GABA<sub>A</sub>.

#### **METHODS**


#### hiPSC-DERIVED NEURONAL CO-CULTURES

- iCell Glutaneurons (80% glutamatergic/20% GABAergic neurons) were plated with astrocytes (85%:15%) and monitored using a microelectrode array (MEA) system (Maestro Edge, Axion).
- On DIV22 and DIV23, spontaneous electrical activity was recorded at baseline and 1 hour after exposure to GABA<sub>A</sub> modulators and solvent controls.
- Cells exposed to agonists were subsequently challenged with antagonists and spontaneous electrical activity was measured 15 minutes after application.

#### HUMAN $\alpha_1\beta_2\gamma_2$ -GABAA ION CHANNEL ASSAYS

- The activity of GABA modulators was assessed by automated patch-clamp (QPatch II, Sophion) using a CHO  $\alpha_1\beta_2\gamma_2$ -GABA<sub>A</sub> cell line.
- All modulators except for ligands were coapplied with 30μM GABA.
- 6-point dose-response curves were generated for all modulators.
- For agonists, a 5-point dose-response curve plus subsequent antagonist challenge was generated.

#### COMPOUND SELECTION



#### RESULTS

#### MEA PARAMETERS

**Firing rate** - Weighted mean firing rate based on electrodes with activity greater than minimum spike rate, set by the neural statistics calculator.

Burst duration - Average time between the first and last spike in a burst.

**Network burst freq.** - Total number of electrode bursts divided by recording time. **Network burst duration** - Average time between the first and last spike in a network burst.

No. spikes per network burst - Average number of spikes in a network burst.

| ↑↑↑≥100%                            |
|-------------------------------------|
| 个个50 to 99%                         |
| ↑20 to 50%                          |
| $\leftrightarrow$ within +/-20%     |
| ↓-20 to -50%                        |
| $\downarrow \downarrow$ -50 to -99% |
| <b>↓ ↓ ↓ ≥-100</b> %                |
| ***p<0.001                          |
| **p<0.01                            |

\* p<0.05

### DEVELOPMENT OF SPONTANEOUS ELECTRICAL ACTIVITY



## AGONISTS INCREASE GABA<sub>A</sub> RESPONSE, DECREASE POPULATION ACTIVITY

|                                                   | JI J INCKLASE GAI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DA <sub>A</sub> RESPONSE, DE                 | CALASE POPULATA                                                | JNACIIVIII                                        |  |  |
|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------------------------------|---------------------------------------------------|--|--|
|                                                   | GABA<br>Agonist, GABA site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>MUSCIMOL</b><br>Agonist, GABA site        | GABA &<br>MUSCIMOL                                             | INDIPLON  Positive allosteric  modulator, BZ site |  |  |
| OVERVIEW OF ACTIVITY                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                              |                                                                |                                                   |  |  |
| Mean firing rate                                  | $\downarrow \downarrow \downarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\downarrow\downarrow\downarrow^*$           | $\downarrow \downarrow$                                        | <u> </u>                                          |  |  |
| Burst duration                                    | $\leftrightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\downarrow \downarrow *$                    | $\downarrow \downarrow *$                                      | $\downarrow$                                      |  |  |
| Network burst freq.                               | $\downarrow \downarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\downarrow\downarrow\downarrow\downarrow^*$ | $\downarrow\downarrow\downarrow\downarrow$                     | $\downarrow$                                      |  |  |
| Network burst duration                            | $\downarrow \downarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\downarrow\downarrow\downarrow\downarrow^*$ | $\downarrow\downarrow\downarrow\downarrow$                     | $\leftrightarrow$                                 |  |  |
| No. spikes per<br>network burst                   | $\downarrow \downarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\downarrow\downarrow\downarrow\downarrow^*$ | $\downarrow\downarrow\downarrow\downarrow$                     | <b>↓</b>                                          |  |  |
| RASTER PLOTS                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                              |                                                                |                                                   |  |  |
| Baseline  1 hour after addition                   | 1ΟμΜ  1 το μπο | 3 μΜ<br>0 50 100 150<br>Time (s)             | 1μΜ each  1 μ                                                  | 3 n M  Time (s)  Time (s)  Time (s)  Time (s)     |  |  |
| $HUMAN$ $α_1β_2γ_2$ - $GABA_A$ ION CHANNEL ASSAYS |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                              |                                                                |                                                   |  |  |
| 6-point<br>concentration-<br>dose response        | Weshouse (%) 100 100 GABA conc. (pM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sesponse (%)  1 10 100  Muscimol conc. (pM)  | 100<br>Sesponse 50<br>1 10 100<br>GABA and Muscimol conc. (MM) | Sesponse (%) 100-100 100 Indiplon conc. (nM)      |  |  |

 $EC_{50} = 2.8 \mu M$ 

 $EC_{50} = 1.1 \mu M$ 

 $EC_{50} = 4.3 \text{nM}$ 

 $EC_{50} = 11.1 \mu M$ 

#### ANTAGONISTS DECREASE GABA RESPONSE, MIXED POPULATION ACTIVITY **PREGNENOLONE BICUCULLINE** PTZ **PICROTOXIN SULFATE** Competitive Non-competitive Non-competitive Negative allosteric antagonist, multiple antagonist, GABA antagonist, pore modulator, modes of action sites site neurosteroid sites **OVERVIEW OF ACTIVITY** Mean firing rate $\leftrightarrow$ **Burst duration** $\leftrightarrow$ Network burst freq. Network burst 个个 $\leftrightarrow$ $\leftrightarrow$ duration No. spikes per $\uparrow \uparrow \uparrow \uparrow$ $\leftrightarrow$ network burst RASTER PLOTS 10μM $3\mu M$ 300μΜ $1\mu$ M Baseline 1 hour after addition HUMAN $\alpha_1\beta_2\gamma_2$ -GABA<sub>A</sub> ION CHANNEL ASSAYS 6-point concentrationdose response PTZ conc. (mM) Pregnenolone Sulfate conc. (M)

# 3 REVERSAL OF AGONIST-INDUCED SEDATION BY ANTAGONISTS

 $IC_{50} = 1.4 \mu M$ 

 $IC_{50} = 3.1 \text{mM}$ 

 $IC_{50} = 28.8 \mu M$ 

 $IC_{50} = 5.5 \mu M$ 

|                                                                                          | INDIPLON                                     | GABA                                 | MUSCIMOL                                             | MUSCIMOL                                    |  |  |  |
|------------------------------------------------------------------------------------------|----------------------------------------------|--------------------------------------|------------------------------------------------------|---------------------------------------------|--|--|--|
|                                                                                          | <b>FLUMAZENIL</b> silent antagonist, BZ site | BICUCULLINE                          | BICUCULLINE                                          | PICROTOXIN                                  |  |  |  |
| OVERVIEW OF ACTIVITY                                                                     |                                              |                                      |                                                      |                                             |  |  |  |
| Mean firing rate                                                                         | $\uparrow \uparrow$                          | <b>^^^*</b>                          | $\leftrightarrow$                                    | <b>^^^*</b>                                 |  |  |  |
| Burst duration                                                                           | $\leftrightarrow$                            | $\uparrow \uparrow$                  | $\uparrow$                                           | <b>^^^*</b>                                 |  |  |  |
| Network burst freq.                                                                      | $\leftrightarrow$                            | 个个个                                  | 个 (from 0)                                           | 个** (from 0)                                |  |  |  |
| Network burst duration                                                                   | $\downarrow$                                 | 个个个                                  | 个 (from 0)                                           | 个** (from 0)                                |  |  |  |
| No. spikes per<br>network burst                                                          | $\leftrightarrow$                            | 个个                                   | 个个个                                                  | <b>^^^*</b>                                 |  |  |  |
| RASTER PLOTS                                                                             |                                              |                                      |                                                      |                                             |  |  |  |
|                                                                                          | 3nM                                          | 10μΜ                                 | 3μΜ                                                  | 3μΜ                                         |  |  |  |
| 1 hour after agonist addition                                                            |                                              |                                      |                                                      |                                             |  |  |  |
|                                                                                          | 3nM                                          | 3μM                                  | 3μM                                                  | 10μM                                        |  |  |  |
| 15 minutes after                                                                         |                                              |                                      | σμινι                                                |                                             |  |  |  |
| antagonist<br>addition                                                                   |                                              |                                      |                                                      |                                             |  |  |  |
| $HIINANN \sim R \times \_CARA IONICHANNIELACCAVC$                                        |                                              |                                      |                                                      |                                             |  |  |  |
| HUMAN α <sub>1</sub> β <sub>2</sub> γ <sub>2</sub> -GABA <sub>A</sub> ION CHANNEL ASSAYS |                                              |                                      |                                                      |                                             |  |  |  |
| Antagonist                                                                               |                                              | %) esuoc 50-                         | 100<br>3μM)<br>sundsea                               | Picrotoxin (%) esuodsey                     |  |  |  |
| challenge                                                                                | 10 30 100 300 300 Indiplon (nM)              | 1 3 10 30 30 GABA concentration (pM) | 0.3 1 3 10 30 30 Muscimol concentration ( <b>M</b> ) | 0.3 1 3 10 30 30 Muscimol concentration (M) |  |  |  |

### **DISCUSSION AND CONCLUSIONS**

- Agonists GABA and muscimol induced sedation in hiPSC-derived neuronal co-cultures and increased  $\alpha_1\beta_2\gamma_2$ -GABA<sub>A</sub> current (fig.1) while antagonists bicuculline and picrotoxin induced seizure in hiPSC-neuronal co-cultures and reduced  $\alpha_1\beta_2\gamma_2$ -GABA<sub>A</sub> current (fig.2).
- PTZ is used *in vivo* to induce seizure. This often involves chronic repeat-dose application, suggesting PTZ may not translate well to single-dose *in vitro* studies (fig.2).
- Pregnenolone sulfate (PS) did not induce seizure in hiPSC-derived neuronal co-cultures, yet inhibited  $\alpha_1\beta_2\gamma_2$ -GABA<sub>A</sub> current. This suggests the expression of other subtypes in neuronal cells, possibly GABA<sub>C</sub> which is considerably less sensitive to PS than GABA<sub>A</sub>.
- In ion channel assays, bicuculline blocked GABA- and muscimol-induced current (fig.3).
   In hiPSC-derived neuronal co-cultures however, muscimol-induced sedation was not reversed by bicuculline. It is known that bicuculline cannot compete with muscimol at GABA<sub>C</sub>, further suggesting its expression in hiPSC-derived neuronal co-cultures.
- Indiplon, a marketed sleeping aid, induced sedation in hiPSC-derived neuronal cocultures and increased  $\alpha_1\beta_2\gamma_2$ -GABA<sub>A</sub> current (fig.3). It was competitively antagonized by flumazenil, a clinical antidote to indiplon overdose. As a silent antagonist, Flumazenil was inactive alone in both assays.
- These studies have further characterised modulation of GABA<sub>A</sub> activity within hiPSC-derived neuronal co-cultures by recapitulating expected clinical outcomes. This further validates the model as a translationally relevant screen for seizure detection which also shows promise for sedation.