Modulation of GABA_A activity: Investigations in hiPSC-derived neuronal co-cultures and human ion channel assays

<u>B. Kelly</u>¹, K. Rockley¹, K. Jones¹, R. Roberts¹, M. Morton¹ ¹ ApconiX, Alderley Edge, Cheshire, United Kingdom

INTRODUCTION

A balance between inhibitory neurotransmission and neuronal excitation is critical for normal brain function. γ -aminobutyric acid (GABA) is the most abundant inhibitory neurotransmitter, which acts on GABA_A receptors. Perturbation of GABA_A signalling by drug-induced inhibition and potentiation are common mechanisms producing seizure and sedation, respectively. The introduction of commercially available human induced pluripotent stem cell (hiPSC-) derived neurons facilitates the *in vitro* study of neuronal function and, in our work, the detection of seizure liability during drug discovery. It is known that GABA_A antagonists such as picrotoxin increase neuronal firing and induce a seizure-like phenotype in hiPSC-derived neurons, however further characterisation of GABA_A modulation within these cell models is lacking. This study aimed to address this by assessing the effects of a selection of GABA modulators on the electrical activity of hiPSC-derived neuronal co-cultures, and the ion flux of $\alpha_1\beta_2\gamma_2$ -GABA_A.

ANTAGONISTS DECREASE GABA RESPONSE, MIXED POPULATION ACTIVITY 2 PREGNENOLONE BICUCULLINE PTZ **PICROTOXIN** SULFATE Competitive Non-competitive Non-competitive **Negative allosteric** antagonist, multiple antagonist, GABA antagonist, pore modulator, modes of action sites site neurosteroid sites **OVERVIEW OF ACTIVITY** Mean firing rate \uparrow \leftrightarrow \downarrow \uparrow^* **Burst duration** $\uparrow \uparrow$ \leftrightarrow Network burst freq. \leftrightarrow \leftrightarrow $\downarrow \downarrow$ \leftrightarrow Network burst $\uparrow\uparrow$ \uparrow \leftrightarrow \leftrightarrow duration No. spikes per $\uparrow\uparrow$ $\uparrow \uparrow \uparrow$ \leftrightarrow^* \leftrightarrow network burst RASTER PLOTS 10µM 3μΜ 300µM 1μΜ

APCONIX

a better decision

METHODS

hiPSC-DERIVED NEURONAL CO-CULTURES

- iCell Glutaneurons (80% glutamatergic/20% GABAergic neurons) were plated with astrocytes (85%:15%) and monitored using a microelectrode array (MEA) system (Maestro Edge, Axion).
- On DIV22 and DIV23, spontaneous electrical activity was recorded at baseline and 1 hour after exposure to GABA_A modulators and solvent controls.
- Cells exposed to agonists were subsequently challenged with antagonists and spontaneous electrical activity was measured 15 minutes after application.

HUMAN $\alpha_1\beta_2\gamma_2$ -GABAA ION CHANNEL ASSAYS

- The activity of GABA modulators was assessed by automated patch-clamp (QPatch II, Sophion) using a CHO $\alpha_1\beta_2\gamma_2$ -GABA_A cell line.
- All modulators except for ligands were coapplied with 30µM GABA.
- 6-point dose-response curves were generated for all modulators.
- For agonists, a 5-point dose-response curve plus subsequent antagonist challenge was generated.

RESULTS

MEA PARAMETERS	
Firing rate - Weighted mean firing rate based on electrodes with activity greater than minimum spike rate, set by the neural statistics calculator.	↑↑↑≥100% ↑↑50 to 99% ↑20 to 50%
Burst duration - Average time between the first and last spike in a burst.	\leftrightarrow within +/-20%

↓-20 to -50%

↓↓-50 to -99%

↓↓↓ ≥-100%

***p<0.001

**p<0.01

* p<0.05

REVERSAL OF AGONIST-INDUCED SEDATION BY ANTAGONISTS

		GABA				
	FLUMAZENIL silent antagonist, BZ site	BICUCULLINE	BICUCULLINE	PICROTOXIN		
OVERVIEW OF ACTIVITY						
Mean firing rate	$\uparrow\uparrow$	$\uparrow \uparrow \uparrow \ast \ast$	\leftrightarrow	$\uparrow \uparrow \uparrow \ast \ast$		
Burst duration	\leftrightarrow	$\uparrow\uparrow$	\uparrow	$\uparrow \uparrow \uparrow \ast \ast$		
etwork burst freq.	\leftrightarrow	$\uparrow \uparrow \uparrow$	个 (from 0)	个** (from 0)		
Network burst duration	\checkmark	$\uparrow \uparrow \uparrow$	个 (from 0)	个** (from 0)		

Network burst freq. - Total number of electrode bursts divided by recording time. **Network burst duration** - Average time between the first and last spike in a network burst.

No. spikes per network burst - Average number of spikes in a network burst.

AGONISTS INCREASE GABA _A RESPONSE, DECREASE POPULATION ACTIVITY						
	GABA Agonist, GABA site	MUSCIMOL Agonist, GABA site	GABA & MUSCIMOL	INDIPLON Positive allosteric modulator, BZ site		
OVERVIEW OF ACTIVITY						
Mean firing rate	$\checkmark \checkmark$	$\downarrow \downarrow *$	$\checkmark \checkmark$	\downarrow		
Burst duration	\leftrightarrow	$\checkmark \checkmark *$	$\checkmark \checkmark *$	· ↓		
Network burst freq.	$\checkmark \checkmark$	$\downarrow \downarrow \downarrow \downarrow^*$	$\downarrow \downarrow \downarrow \downarrow$	\downarrow		
Network burst duration	$\checkmark \downarrow$	$\checkmark \checkmark \checkmark \checkmark *$	$\checkmark \checkmark \checkmark$	\leftrightarrow		

DISCUSSION AND CONCLUSIONS

- Agonists GABA and muscimol induced sedation in hiPSC-derived neuronal co-cultures and increased $\alpha_1\beta_2\gamma_2$ -GABA_A current (fig.1) while antagonists bicuculline and picrotoxin induced seizure in hiPSC-neuronal co-cultures and reduced $\alpha_1\beta_2\gamma_2$ -GABA_A current (fig.2).
- PTZ is used *in vivo* to induce seizure. This often involves chronic repeat-dose application,

suggesting PTZ may not translate well to single-dose *in vitro* studies (fig.2).

Pregnenolone sulfate (PS) did not induce seizure in hiPSC-derived neuronal co-cultures, yet inhibited $\alpha_1\beta_2\gamma_2$ -GABA_A current. This suggests the expression of other subtypes in neuronal cells, possibly GABA_C which is considerably less sensitive to PS than GABA_A.

In ion channel assays, bicuculline blocked GABA- and muscimol-induced current (fig.3). In hiPSC-derived neuronal co-cultures however, muscimol-induced sedation was not reversed by bicuculline. It is known that bicuculline cannot compete with muscimol at GABA_c, further suggesting its expression in hiPSC-derived neuronal co-cultures.

Indiplon, a marketed sleeping aid, induced sedation in hiPSC-derived neuronal cocultures and increased $\alpha_1\beta_2\gamma_2$ -GABA_A current (fig.3). It was competitively antagonized by flumazenil, a clinical antidote to indiplon overdose. As a silent antagonist, Flumazenil was inactive alone in both assays.

• These studies have further characterised modulation of GABA_A activity within hiPSCderived neuronal co-cultures by recapitulating expected clinical outcomes. This further validates the model as a translationally relevant screen for seizure detection which also shows promise for sedation.