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A B S T R A C T   

In 2013, the Global Coalition for Regulatory Science Research (GCRSR) was established with members from over 
ten countries (www.gcrsr.net). One of the main objectives of GCRSR is to facilitate communication among global 
regulators on the rise of new technologies with regulatory applications through the annual conference Global 
Summit on Regulatory Science (GSRS). The 11th annual GSRS conference (GSRS21) focused on “Regulatory 
Sciences for Food/Drug Safety with Real-World Data (RWD) and Artificial Intelligence (AI).” The conference 
discussed current advancements in both AI and RWD approaches with a specific emphasis on how they impact 
regulatory sciences and how regulatory agencies across the globe are pursuing the adaptation and oversight of 
these technologies. There were presentations from Brazil, Canada, India, Italy, Japan, Germany, Switzerland, 
Singapore, the United Kingdom, and the United States. These presentations highlighted how various agencies are 
moving forward with these technologies by either improving the agencies’ operation and/or preparing regula-
tory mechanisms to approve the products containing these innovations. To increase the content and discussion, 
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the GSRS21 hosted two debate sessions on the question of “Is Regulatory Science Ready for AI?” and a workshop 
to showcase the analytical data tools that global regulatory agencies have been using and/or plan to apply to 
regulatory science. Several key topics were highlighted and discussed during the conference, such as the capa-
bilities of AI and RWD to assist regulatory science policies for drug and food safety, the readiness of AI and data 
science to provide solutions for regulatory science. Discussions highlighted the need for a constant effort to 
evaluate emerging technologies for fit-for-purpose regulatory applications. The annual GSRS conferences offer a 
unique platform to facilitate discussion and collaboration across regulatory agencies, modernizing regulatory 
approaches, and harmonizing efforts.   

Disclaimer 

The views expressed in this article are the authors’ personal views 
and may not be understood or quoted as being made on behalf of or 
reflecting the position of the agencies or organizations with which the 
authors are affiliated. No endorsement or recommendation is inferred 
from the mention of brand names or descriptions of approaches. Authors 
do not necessarily represent the decisions, policies, or views of the In-
ternational Agency or other government agencies. 

1. Introduction 

Recent decades have seen a significant advancement in the innova-
tion of fundamental research, particularly with emerging technologies, 
including artificial intelligence (AI) and the application of real-world 
data (RWD) (Gunasekeran et al., 2021; Holzinger et al., 2019 Chen 
et al., 2021). Regulatory science research aims to develop, refine, and 
translate these innovations and advancements into their potential ap-
plications in regulatory decision-making (Hamburg 2011). Regulatory 
science is applied globally and therefore its continued evolution requires 
worldwide collaborations and harmonization. For a technology to be 
successfully translated into regulatory application in a global setting, it 
is critical to understand these technologies in the context of interna-
tional regulatory requirements. Consequently, effective communication 
among global regulatory agencies is essential. In 2013, the Global 
Coalition for Regulatory Science Research (GCRSR) was established 
with members from over ten countries (www.gcrsr.net). One of the main 
objectives of GCRSR is to facilitate communication among global regu-
lators and to advance the application of new technologies in the regu-
latory space through the annual conference, the Global Summit on 
Regulatory Science (GSRS) (Slikker Jr et al. 2012, 2018; Miller et al., 
2013; Howard et al., 2014; Tong et al., 2015; Healy et al., 2016; Lambert 
et al., 2017; Thakkar et al., 2020; Allan et al. 2020; Anklam et al., 2022). 
While the GSRS annual conference is organized by the GCRSR members, 
the attendees and presenters have involved both government, industry, 
and academia. The GSRS participants have an opportunity to discuss 
innovations and regulatory considerations by interacting with pre-
senters from various regulatory agencies, industries, and academia 
across the globe. 

The GSRS conferences have been held annually in various countries 
and have focused on a broad range of topics in the area of emerging 
technologies (Slikker Jr et al. 2012, 2018; Anklam et al., 2022), 
including bioinformatics (Tong et al., 2015; Thakkar et al., 2020; Miller 
et al., 2013; Healy et al., 2016) and nanotechnologies (Allan et al. 2020; 
Lambert et al., 2017; Howard et al., 2014). For example, GSRS20 was 
focused on emerging technologies, including the future application of AI 
(Anklam et al., 2022). The latest conference, GSRS21, significantly 
focused on both AI and RWD, with a broader perspective and direction 
on evaluating recent advances and their ability to modernize regulatory 
function, improve efficiency, and facilitate global agency collaboration 
and coordination (https://gcrsr.net/2021-gsrs/) (Fig. 1). This 3-day 
virtual conference was organized jointly by FDA/NCTR and GCRSR 
and held Oct 4–6, 2021, with day 1 devoted to digital health and safety 
and day 2 to AI and Machine Learning (ML). To facilitate discussion, the 
GSRS21 also hosted two debate sessions based on the question “Is 

Regulatory Science Ready for AI?” as well as a workshop to showcase the 
data analytics tools that global regulatory agencies have been using 
and/or plan to apply to their regulatory space. The conference drew a 
large audience (>800 participants) with speakers from 10 different 
countries. 

Continued progress in AI and RWD provide enormous opportunities 
for regulatory application with two significant aspects, improving the 
agencies’ operation and preparing regulatory mechanisms to review and 
approve products utilizing these innovations. This is especially impor-
tant to drug development which usually spans many years and comes 
with a huge cost, where AI and RWD have demonstrated the ability to 
improve drug safety and review. In terms of food, RWD has shown po-
tential to provide opportunities for development in the real-world 
setting and improve food safety. With the understanding that AI can 
efficiently analyze a large amount of data and provide predictive ana-
lytics to foresee future outcomes, the GSRS21 conference provides a 
platform to discuss these innovations with a specific emphasis on reg-
ulatory need. Specifically, four topics were extensively discussed which 
are summarized in the subsequent sections; these are (1) Can AI and 
RWD be applied to drug and food safety assessments? (2) Is regulatory 
science ready for AI? (3) Are data science tools readily applicable to 
regulatory applications? and (4) Where should regulatory science 
research go from here? 

2. Can AI and RWD assist regulatory science in drug and food 
safety? 

The review processes for food safety, pattern recognition, and 
foodborne outbreaks primarily relies on a manual analysis of images, 
spectrometric data, genomic data, chemical compositions, and identifi-
cation of contaminants. These manual processes are time-consuming, 
labor-intensive, and expertise driven. AI and machine learning (ML) 
could significantly shorten review time and reduce variations typically 
introduced by humans. Several agencies, including the US-FDA and the 
Canadian Food Inspection Agency, have ongoing programs for devel-
oping genomics techniques for food safety and traceability (Franz et al. 
2016; Kovac et al., 2017; Carrillo et al., 2019), where both AI and RWD 
methodologies have been evaluated and developed. This has been a 
longstanding effort by several agencies, some of which were extensively 
discussed in previous GSRS conferences (Tong et al., 2015). For 
example, the GCRSR bioinformatics working group has established a 
special technical team to evaluate the potential impact of microbial 
genomics and whole genome sequencing (WGS) on food safety and 
outbreak detection in order to develop international standards for the 
analysis and reporting of next-generation sequencing data in regulatory 
applications (Lambert et al., 2017). Because WGS and other digital 
technologies can evaluate massive amounts of data in a short amount of 
time, it is crucial to establish a regulatory framework to define the 
boundary of application and context-of-use in order to realize the full 
potential of these approaches. 

During the GSRS21, the U.S. FDA’s New Era of Smarter Food Safety 
initiative was discussed. In the recent release Blueprint for New Era of 
Smarter Food Safety, there was a discussion outlining the steps the US- 
FDA planned to take over the next decade to create a more digital, 
traceable, and safer human and animal food system (https://www.fda. 
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gov/food/new-era-smarter-food-safety). There is a substantial challenge 
in developing digital data collection and rapid analysis systems for food 
safety. For example, blockchain technology may be pivotal in food safety 
outbreak responses. Within this initiative, the US-FDA issued a final 
foundational rule on food traceability as the first step to harmonizing 
key data elements and critical tracking events needed for enhanced 
traceability of contaminated foods. AI/ML tools could support this rule 
and provide more efficient tracing systems in the near future as a part of 
the goals of US-FDA’s New Era of Smarter Food Safety. 

In addition to the importance of RWD and AI approach in food safety, 
both have also been demonstrated that augmenting that knowledge to 
existing information aids in improving our understanding of efficacy 
determinations as well as drug safety and toxicity assessments. These 
technologies enable scientists to make sense of the massive amounts of 
data for this regulatory application. For example, the Swiss Federal 
Statistical Office comprehensively collects administrative hospital data 
of all inpatient stays at any hospital in Switzerland. Swissmedic, the 
Swiss authority responsible for the authorization and supervision of 
therapeutic products, discussed the utility of using serious adverse drug 
reactions (ADRs) related to hospital admissions as RWD that could be 
useful in developing automated pharmacovigilance signal detection. 
However, to effectively incorporate data science into regulatory appli-
cations agencies could consider adoption of open data science principles 
such as FAIR principles (Findable, Accessible, Interoperable, and Reus-
able data) while maintaining all the data security related considerations. 
Regulatory agencies may also consider having an option for the regu-
latory data sharing. For example, The Brazilian Health Regulatory 
Agency – ANVISA – is making 29 databases available on health sur-
veillance products and services (Carvalho-Soares et al., 2021). Regula-
tory bodies of multiple countries making regulatory data freely 
available, would not only promote transparency, but also provide 
valuable insights into regulatory questions. For example, the FDA 
established the Data Dashboard to facilitate new and more accurate 
regulatory science research and thus improving science-based regula-
tory decision-making. 

Crowdsourcing is another vital mechanism to achieve consensus on 

data science methods to support their regulatory application (Mishima 
et al., 2018; Barber et al., 2015). For example, the National Institute of 
Health Science (NIHS) of Japan initiated a crowdsourcing program to 
assess the utility of QSAR models for Ames mutagenicity prediction 
(Honma et al., 2019; Liu et al., 2021). In this program, a large number of 
chemicals with known mutagenicity was first released to all the partic-
ipants to construct predictive models. Once these models were 
completed and “frozen”, the program released a test set of chemicals 
whose mutagenicity data were blinded (i.e., the participating scientists 
didn’t know the mutagenicity potential of the agents in the test set). 
Lastly, each QSAR model from all the participants were evaluated based 
on their performance on the test set. This program highlighted the key 
features that need to be considered with regulatory application of this 
type of model. 

3. Is Regulatory Science Ready for AI? 

We’re all aware of the promise of AI, but do we have the right sci-
entific knowledge and assessment practices within the regulatory com-
munity to cope with the challenges that is inherent with AI? In contrast 
with the previous GSRS conferences, the GSRS21 hosted two debate 
sessions using a virtual format on the question of “Is Regulatory Science 
Ready for AI?” The debate session started with one debater who gave a 
short presentation to describe a position on the matter, and then the 
second debater delivered a rebuttal. 

The first debate session limited the scope of the debate to the pre-
clinical domain specifically for drug discovery and development, where 
AI plays an increasing role. Specific examples were given of target 
identification using AI-powered language models (Liu et al., 2021; Zhao 
et al., 2020) and other AI methodologies (Henstock 2021). Regulatory 
agencies have also developed the framework and guidelines to facilitate 
the application of AI in drug safety assessment and development. For 
example, the US-FDA established a qualification program called Inno-
vative Science and Technology Approaches for New Drugs (ISTAND) 
(Food and and Drug Administration, 2021). The program is intended to 
provide a pathway for novel approaches to be integrated into drug 

Fig. 1. GSRS21 adopted three different formats to discuss the four different topics. Innovative research ideas and developments in AI and RWD were presented 
through a series of presentations. In addition, a workshop presented and/or demonstrated the tools that are being currently used in various regulatory agencies 
around the world and a debate session on the role of regulatory science to improve the readiness of AI for the regulatory environment. The overall discussion shed 
light upon providing the status of AI applications in regulatory sciences along with the discussion on how these technologies evolved and its future direction. 
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development and regulatory decision-making. The program is focused 
explicitly on nonanimal-based methodologies and technologies 
including AI/ML that “use human biology to predict human outcomes in 
order to help reduce and replace animal testing as part of drug devel-
opment.“(‘Physicians Committee Policy Work Pushes FDA to Launch 
Pilot Program to Evaluate and Accept Nonanimal Approaches in Drug 
Development’ 2020; ‘FDA Launches Program to Approve Human 
Biology-Based Methods for Use in Drug Development’ 2020). This pro-
cess starts with a Letter of Intent (LOI), followed by a Qualification Plan 
(QP), and finalized with a Full Qualification Package (FQP) (Food and 
Drug Administration, 2020). Once a tool is qualified, it could be avail-
able for use in any drug development program and even be included in 
the drug approval process (i.e., IND, NDA, BLA applications, etc.) 
without the need for FDA to reconsider and reconfirm its suitability 
(Food and Drug Administration, 2021; Food and Drug Administration, 
2017; Food and Drug Administration, 2021). 

The second debate was centered on clinical applications of AI. In the 
past five years, many studies have demonstrated the promising perfor-
mance of AI in diagnosis and prognosis in specific cases, such as task- 
specific applications when dealing with clinical images such as radio-
logical images (Bi et al., 2019). While most agree that AI plays an 
increasing role in our lives, important questions have been debated on 
including (1) which AI technology available today that are ready for 
clinical application, to what extent, and in which contexts? (2) How can 
we ensure that safe and effective AI technologies are available to pa-
tients? and (3) what is important for patient so that they can understand 
and trust these technologies? There is no question that these scientific 
achievements are very promising, but are the patients comfortable with 
AL playing a significant role in their medical care? How can these 
technologies augment the role of the physician and other health care 
providers? The physician is certified to provide medical care, but what 
are the best methods to evaluate these products, and how to empower 
providers, patients and caregivers to use AI-enabled technologies (Jus-
supow et al., 2021; Durán, 2021)? It is important to consider to what 
extant patients may or may not be fully ready to use AI-enable tech-
nologies for different applications; and it is also important to consider 
the applications of AI in regulatory science. 

Regulatory agencies like US-FDA are taking a very active role in 
facilitating AI’s clinical applications. For example, US FDA has posted a 
list of more than 500 regulatory authorizations of AI/ML-enabled 
medical devices across many different medical disciplines. These 
include an AI software for detecting small but potentially cancerous 
lesions in the lungs (Acs et al. 2020; Hosny et al., 2018). The US-FDA 
also has cleared the marketing of the GI Genius, the first device that 
uses ML to assist clinicians in detecting lesions (such as polyps or sus-
pected tumors) in the colon, in real-time during a colonoscopy (Strümke 
et al., 2021; Spadaccini et al., 2022). More recently, US-FDA cleared the 
marketing of a device called Paige Prostate, the first software that uses 
AI to aid in prostate cancer diagnosis based on the prostate biopsy image 
(Perincheri et al., 2021). As noted further below, US, FDA has sought 
extensive stakeholder input for its innovative approach to the regulation 
of AI/ML enabled medical devices, including for its journey 2021 Arti-
ficial Intelligence/Machine Learning (AI/ML)-Based Software as a 
Medical Device (SaMD) Action Plan (Vokinger et al. 2021). 

In contrast to AI/ML models, mechanistic-based models (i.e., agent- 
based models) do not rely on the software to “learn” a behavior from 
large data sets. Instead, they rely on established knowledge (biological, 
medical, immunological). These other models can predict the outcome 
of an “in silico experiment” or an “in silico trial” to assist clinical decision- 
making or drug discovery (Pappalardo et al., 2019). In this context, 
Universal Immune System Simulator (UISS) (Russo et al., 2022) is a 
simulation framework to model the immune system. The UISS model is 
used in several funded projects to model knowledge on immunological 
aspects of different pathologies and support in silico trials, with partic-
ular attention to those regulatory aspects that may not be addressed. In 
an EU-funded project, UISS will be submitted to (European Medicines 

Agency) EMA for qualification advice when used in tuberculosis context. 
One of the aims of the In Silico World project is to provide a precise and 
suitable regulatory pathway to assist developers that would like to 
pursue regulatory applicability and to ultimately develop a recognized 
harmonized standard in accordance with EMA requirements to support 
regulatory activities for in silico trials. 

While we can identify successful examples of AI’s application in 
medicine, the discussion raised additional questions. For example, how 
can regulatory science development ensure the evaluation and surveil-
lance methodologies are well suited to AI technologies and can support 
regulatory decision-making? Is regulatory science ready to endorse the 
use of AI across all applications or only a few areas? Regulatory science 
could play a critical role in developing a regulatory structure and 
framework for evaluation of AI application, including promoting trust-
worthiness and reliability in these technologies. 

4. Are data science tools important to regulatory applications? 

A unique component of this conference was the workshop on “Data 
analytical tools for drug and food review by global regulatory agencies.” 
The workshop was designed to showcase the global regulatory agencies’ 
data analytics tools, possibly fostering future collaborations. The 
workshop hosted a live presentation and demonstrations of data ana-
lytics tools by US-FDA, EMA, and Swissmedic. These tools have been 
developed (or are being developed) to facilitate regulatory application 
in their respective agencies by addressing specific needs, such as sys-
tematic review, data fitness, data searching, extraction, harmonization, 
and validation of extracted data. 

The vast majority of data used in regulatory decision-making are 
presented in text document, where AI could be of significance to facil-
itate the review process. Globally, regulatory agencies have not only 
reviewed vast quantities of submitted application, papers, and/or liter-
ature data, but have also generated a plethora of documents during the 
product-review process. It is typical that these types of records are un-
structured text and often do not follow the use of standard vocabulary. 
AI has advanced the field, providing some fashion of automation to 
significantly reduce the current manual reading process in assessing the 
safety and efficacy of drug and food products (Wang et al., 2021; Liu 
et al., 2021). For example, Adverse drug reactions (ADRs) are of great 
concern. It is one of the top 10 leading causes of hospitalization and 
death worldwide (Patel et al., 2007). Therefore, many government 
agencies have developed and implemented frameworks to detect ADRs 
early. To help reviewers identify reported ADR-related published liter-
ature, Swissmedic is developing the AI-based search engine (LiSA) to 
automatically determine the relevant safety signals in published 
biomedical literature (Martenot et al., 2022). The intent is to identify 
relevant ADRs from various literature sources about a specific topic and 
also determine the relevance of this shortlisted literature and learn from 
the feedback provided about the quality and relevance of the search 
(Martenot et al., 2022). The relevance of the shortlisted search is 
established by causality assessment and determining the seriousness of 
ADRs. The development of this tool will help the reviewer quickly 
identify ADRs from the relevant biomedical literature (Martenot et al., 
2022). 

As EU efforts are underway to develop harmonized electronic 
product information, the US-FDA also developed the FDALabel system 
that provides a full-text search of the drug product labeling via a web- 
based application (Fang et al., 2020). FDALabel used FDA’s SPL 
(Structured Product Labeling) for human and animal prescription and 
nonprescription drugs and biological product information. Currently, it 
contains >140,000 labeling data and is updated regularly. FDALabel is a 
powerful web-based database tool that allows flexible and customizable 
searches of human prescription drug, biological, and over-the-counter 
(OTC) labeling documents (Fang et al., 2016). This web-based tool can 
perform a combination of text search, product names, drug application 
types, pharmacologic classes search etc., which are repeatable and 
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reproducible. FDALabel is integrated with Medical Dictionary for Reg-
ulatory Activities (MedDRA) standards, allowing automation and 
advanced searches across various drug labeling sections (Fang et al., 
2016) for ADR studies. FDALabel recently demonstrated its successful 
use in identifying pharmacogenomics information by identifying the 
relationship between drug response and genetic biomarkers from indi-
viduals/populations to facilitate precision medicine studies. FDALabel 
was developed by providing scientifically validated information that 
assists health care professionals in prescribing and dispensing medicine 
and benefits patients and consumers as they learn about safe product 
usage. Like FDALabel, efforts from EMA demonstrated the development 
of similar approaches (Getova and Getov 2022). 

EMA presented the electronic product information (ePI) system for 
EU medicines. In the EU, a medicine’s product information includes the 
summary of product characteristics, labeling and the package leaflet. It 
is a crucial source of regulated and scientifically validated information 
that assists health care professionals. ePI is presented in a semi- 
structured format developed using the EU Common Standard. ePI is 
centrally authorized (through EMA) and nationally certified (through 
Member State authorities), enabling the electronic handling of product 
information and allowing dissemination via the web and various e- 
platforms, as well as print. A proof-of-concept prototype was discussed 
during the workshop. This published prototype was created using the 
draft standard to generate example Fast Healthcare Interoperability 
Resources (FHIR)-based documents associated with products in the 
Substance, Product, Organizational, and Referential (SPOR) program 
(EMA’s data management services for ISO IDMP compliant master data). 
ePIs exist in Word documents in 25 different languages, are open access 
with flexible implementation, and have interoperability with other EU 
eHealth initiatives. 

During the workshop, US-FDA’s Center for Food Safety and Applied 
Nutrition (CFSAN) extensively discussed the development of tools and 
knowledge bases for food safety, including FoodTrak that provides 
CFSAN with US food label and product sales data, FARM (Food Appli-
cation and Regulation Management) provides the submission and 
literature data, STARI (Scientific Terminology and Regulatory Infor-
mation) provides regulation-related information, and WILEE (Warp 
Intelligent Learning Engine) includes horizon scanning, data analytics, 
and data lake functions. Combined with the institutional knowledge 
captured by CERES (Chemical Evaluation and Risk Estimation System), 
interoperability of these tools through common data (substance names, 
substance synonyms and substance IDs) provides the capability to un-
leash the power of big data in regulatory decision-making. Specifically.  

• WILEE is an advanced data-driven, risked based decision-making 
tool being developed by the Office of Food Additive Safety (OFAS) 
in CFSAN. It leverages AI technologies to integrate, process, and 
analyze a large variety of data sources to provide horizon-scanning 
capabilities. Once fully implemented, these capabilities will enable 
OFAS to maintain a proactive posture and have the capacity to 
“forecast” industry trends. The intention is to stay ahead of the 
development cycle, prepare for a potentially large influx of sub-
missions, and prioritize actions based on risk or stakeholder 
perceived risk regarding substances under the Office’s regulatory 
purview. This project utilizes the power of big data to identify food 
safety trends. WILEE has multiple modules that enable post-market 
surveillance, signal detection, and knowledge discovery. The devel-
opment is underway in various phases. The first phase in develop-
ment of WILEE is dedicated to creating a centralized data resource 
for OFAS/CFSAN with an architecture that enables advanced ana-
lytics and on-demand data analysis.  

• FoodTrak provides a more comprehensive, efficient, and accurate 
solution for monitoring the US food supply by integrating post- 
market label and nutrition data from packaged and restaurant food 
as well as dietary supplement data. The platform will help support 
CFSAN’s mission by developing dashboards and user interface 

functionality that overlay cleaned, standardized, and structured 
data. Goals for the platform include centralizing access to data, 
optimizing linking of data sources, driving functionality of data 
integration between CFSAN and FDA data systems, reducing analysis 
time by enabling turn-key analyses and more efficient use of data, 
and improving accuracy of analysis output because of improved data 
quality and data standardization. Once completed, the tool will help 
identify novel hidden trends and data connections and execute 
multiple important analyses, such as determining if foods have been 
reformulated and understanding the changing dynamic of the food 
supply. 

• FARM is an electronic document repository and workflow manage-
ment system which supports the premarket and post-market safety 
review of food additives, color additives, food contact substances, 
and generally recognized as safe (GRAS) substances and business 
processes through Appian workflows developed for tracking the 
status of these pre-and post-market review processes. This system 
can perform advanced searches and display the results in a user- 
friendly dashboard. It can also generate structured reports based 
on the data tracked in the business workflows.  

• STARI is a multi-hierarchical ontology of chemical, biological, 
technical, and regulatory data of interest to CFSAN programs. The 
user-friendly search and display interface not only provides data 
housed in STARI but provides linkages back to other OFAS/CFSAN 
system including FARM and CERES. Additional linkages to other 
CFSAN systems are envisioned in the future including linkages to 
WILEE and FoodTrak allowing quick access to a more global view of 
regulatory, chemical, and toxicological data of substances under the 
regulatory purview of OFAS/CFSAN.  

• CERES, OFAS’s institutional knowledge-based system, is a chemical 
structure-based institutional knowledgebase with a simple user 
interface that allows the user to search for and display chemical and 
toxicological data that has been captured from OFAS’s scientific 
evaluations of food additives, color additives, food contact sub-
stances, and GRAS substances. The system also links these substances 
to their administrative records in FARM, so users have quick access 
to scientific reviews as well as original data archived in food additive 
and color additive petitions, food contact notifications, and GRAS 
notifications. Because CERES is chemical structure-based, it allows 
the user to conduct structure similarity searches to identify relevant 
information on related substances. Of note, CERES is currently being 
expanded to include the TRAM (Toxicity Reports and Analysis 
Management) system, which provides a simple user front-end that 
allows access to a number of tools including FARM, CERES, STARI, a 
compound registration and curation tool, a toxicity data harvesting 
tool to collect legacy toxicity data from older submissions housed in 
FARM, and the MyMemo tool.  

• The MyMemo tool is a web-based tool that allows the user to select 
standardized letter or memorandum templates and build their letter 
or memorandum within the web-based tool. Because of the stan-
dardized format of the MyMemo templates and linkages between 
TRAM and other OFAS systems, OFAS is able to programmatically 
extract important institutional knowledge from these documents and 
populate other systems such as FARM, Appian, and CERES to ensure 
these systems are easily updated. 

5. Where should regulatory science research go from here? 

As stated in a recent Nature article titled Rise of Robot Radiologists, 
“AI won’t replace radiologists, but radiologists who use AI will replace 
radiologists who don’t” (Reardon 2019). This statement highlights the 
role of AI-enabled technologies in augmenting the work of human cli-
nicians and it reflects where regulatory science can play a role in 
advancing AI and RWD to support regulatory decision-making. One of 
the most significant benefits of AI/ML resides in its ability to learn from 
real-world use to improve its performance (Food and Drug 
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Administration, 2019). A US-FDA/Center for Devices and Radiological 
Health (CDRH) presentation described how medical device manufac-
turers are using AI to innovate their products to assist health care pro-
viders and improve patient care (Helm et al., 2020). In light of the 
unique considerations for these technologies, and to meet the needs of a 
broad set of stakeholders, US FDA has taken a collaborative and inno-
vative approach to the development of a regulatory framework for 
AI-enabled medical devices to ensure these devices are safe and effec-
tive. This has included the issuance of a discussion paper and request for 
feedback from the public in April 2019, convening numerous public 
workshops and meetings including a patient engagement advisory 
committee (PEAC) meeting focused on patient trust in AI/ML technol-
ogies [https://www.fda.gov/media/143266/download], publishing an 
internationally harmonized set of Guiding Principles for Good Machine 
Learning Practice (GMLP) [https://www.fda.gov/medical-devices/soft 
ware-medical-device-samd/good-machine-learning-practice-medical 
-device-development-guiding-principles], and in January 2021 issuing 
its AI medical device software action plans (Food and Drug Adminis-
tration, 2021). The goals of the Action Plan include fostering a 
patient-centered approach, strengthen US-FDA’s role in harmonizing 
Good Machine Learning Practices (GMLP), supporting regulatory sci-
ence efforts including those focused on bias and health equity, updating 
the proposed AI/ML framework, and advancing the use of RWD to un-
derstand product performance. 

For any application of an emerging technology, it is important for a 
risk assessment to be carefully performed. An European Food Safety 
Authority (EFSA) presentation demonstrated that AI could achieve this 
operating in conjunction with human interventions and currently 
improving regulatory sciences (Anklam et al., 2022). A human-centric 
approach — where the core accountability of the risk assessment plan-
ning is human while the execution is more computer driven — is more 
realistic, allowing human and AI to work in tandem (Akerlind et al., 
2022). As executed by EFSA and as a more general model for regulatory 
science, this risk assessment involves a structured process where 
selected scientists are asked to provide scientific recommendations to 
inform managerial decisions. Automation of the process through AI is 
mainly designed to move the workload from the human experts to ma-
chines (IZSTO et al., 2017) (Cappè et al., 2019). However, AI-powered 
models are still far from demonstrating human-like causal reasoning, 
imagination, top-down reasoning, or general intelligence that could be 
applied broadly and effectively. Therefore, human intervention is 
important to address with general intelligence, such as the risk assess-
ment process, where the human-centric approach is designed to 
augment AI models. These models could be applied to narrow, 
well-defined areas of risk assessment where AI guardrails could be 
deployed by incorporating rule-based algorithms that serve as a sub-
stitute for human judgment. 

Clearly, evaluation of the potential for AI readiness requires research 
initiatives from multiple stakeholders, as the research and regulatory 
bodies go hand in hand. The Burroughs Wellcome Fund (BWF) offers 
two programs that promote innovation in this area. One is the In-
novations in Regulatory Science Award (IRSA). The IRSA provides in-
vestigators with substantial funding over five years to develop 
innovative and implementable solutions to regulatory questions. 
Research proposals must indicate the direct implications for regulatory 
policy. In addition, BWF is launching a one-time initiative called Tech-
nology Innovation for Equitable Clinical Outcomes (TIECO). TIECO 
addresses the prevalence of bias in healthcare tools, both physical 
(medical devices) and computational (diagnostic algorithms), leading to 
severe health outcomes for individuals for whom the system is not 
designed. Some examples include pulse oximeters for individual with 
darker-skin pigmentation, hip implants for women (physical bias), kid-
ney function estimation and lung spirometers, the use of race as in input 
(computational bias). The example mentioned above are supported by 
BWF and through that support fuels the innovation pipeline to create an 
environment that facilitates testing of AI applications. It should be 

emphasized that data bias could lead to AI bias, potentially resulting in 
tremendous social impact and regulatory consequences. 

EMA is also putting considerable emphasis on the advancement of 
regulatory science through the use of AI and ML (Hines et al., 2019). 
Several cross-agency coordination groups on AI were formed to promote 
oversight and harmonization, mapping expertise across the agencies, 
and defining more explicit roles and responsibilities. Discussions are also 
ongoing within EMA as part of AI technical group initiatives for 
knowledge sharing, researching and developing recommendations and 
best practices to support innovation in data science and AI (Hines et al., 
2020). The Digital Business Transformation Task Force serves as a hub 
for innovation, experimentation, and collaboration throughout the 
phases of digital business transformation, from strategic planning and 
design, testing and piloting to full implementation. EMA provides 
various AI-driven services like Process (re-) engineering for digital 
mapping of business processes or re-engineering processes to exploit 
digital technologies, automation, and AI. The initiative also supports 
identifying new digital solutions and selecting proof-of-concept ideas. 
Under this initiative, EMA continually searches for promising novel 
digital solutions on the market and explores how these could be 
exploited for EMA business value, such as increasing organizational ef-
ficiencies. EMA houses the Analytics Center of Excellence (ACE). ACE 
explores how analytics - including AI, ML and Robotics – can be used to 
build pragmatic solutions to existing EMA business needs with the pri-
mary objective of gaining efficiency. EMA also supports the efforts for 
Healthcare Data Analytics. A key component is understanding how AI, 
ML and new digital technologies can be leveraged to structure and 
expose messy data and achieve more profound insights into healthcare 
data. 

The recent global pandemic and our response to it demonstrates the 
important role science plays in mitigating the effects of a crisis. Data- 
driven scientific and policy decisions play pivotal roles in response to 
a health crisis and drive decisions to best protect lives. AI and big data 
analytics played crucial roles in guiding the Joint Research Center’s 
(JRC) response to COVID-19 from many different angles, particularly by 
providing epidemiological models and research data on outbreak dy-
namics. The pandemic has nurtured and enhanced interest in AI’s 
application in the health care sector. Reliance on big data, ML, and other 
AI-related techniques expedited vaccine development by speeding up 
the research pipeline and the supply chain. The EU has emphasized its 
support of big data and AI, supporting the increase of automation in 
analytics and the production line to increase treatment availability and 
illness prevention (Egilman et al., 2021). To help understand the land-
scape, JRC analyzed the global technology landscape for AI in health-
care and identified 2000 players worldwide that were actively applying 
AI to the healthcare sector. 

AI can play a role in regulatory science, which has already been 
demonstrated in multiple instances where AI approaches have enabled 
us to solve problems with over the-shelf products and/or with already 
available algorithms. However, for an AI system to perform well, su-
perior datasets must be available. Quality data is comprised of a large 
volume of good quality semantically structured data. Therefore, data 
governance is a necessary global step in addition to boosting shared data 
repositories. The biggest challenge the research community faces is the 
current fragmentation of data in many repositories with multiple for-
mats and definitions. Another challenge is that, in some cases, the data 
codes are not uniform. Each data source has a coding system, and 
different ways of assigning codes to medicines are employed without 
national or international standardization (Leal et al., 2021). Therefore, 
bringing these data together presents a substantial regulatory challenge. 
For example, the JRC put forward its strategy to create a single market 
for data (Van Roy et al., 2021). A single market would allow data to flow 
freely within the EU and across sectors to benefit businesses, re-
searchers, and public administration. Importantly, to be ready for AI 
approaches, there have been multiple policy-driven initiatives. The EU 
has also put forward several regulatory framework proposals on AI to 
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provide adequate risk assessment and mitigation systems, including 
high-quality datasets ready to feed the AI pipeline with high robustness, 
security and accuracy, also ensuring appropriate human oversight is 
implemented to minimize the risk. Moving forward a similar approach 
could be globally implemented to greatly enhance the data available for 
utilization by AI to further improve application in regulatory science. 

6. Summary 

To understand the role both AI and RWD play in the global regula-
tory science environment, GSRS21 took a multifaced three-dimensional 
approach to facilitate the discussion (Fig. 1). The first approach identi-
fied innovative research ideas and developments presented through a 
series of talks focused on new developments at the cross-section of AI/ 
ML and regulatory sciences as related to food and drug safety. The 
second approach showed and/or demonstrated the tools currently being 
used in various regulatory agencies worldwide. The third approach 
evaluated different standard points on the same topic by debating and 
defining regulatory science’s role in improving AI readiness for the 
regulatory environment. GSRS21 highlights include the opening re-
marks by the US-FDA Acting Commissioner and presentations by 
government-agency senior leadership from the US and EU. In addition, 
scientists representing ten countries worldwide made platform pre-
sentations. A unique feature of the conference was the live debate on the 
topic of “Is Regulatory Science Ready for AI?” A special workshop also 
showcased data-science tools currently in regulatory use by US-FDA, 
EMA, and Swissmedic. 

Examples were presented for new analytical tools playing significant 
functions in the global regulatory agencies. Some of these tools are 
already an integral part of the regulatory process. It has been evident 
that RWD can be used as real-world evidence to improve our ability to 
assess food and drug safety and thus improve public health. We have 
also seen tremendous regulatory engagement in facilitating AI to 
improve an agency’s operation and develop the regulatory structure to 
regulate products containing AI. The conference was concluded with the 
question of where regulatory science research should go. Emerging 
technologies need to be constantly evaluated to actively facilitate the 
use of these new tools in regulatory settings. New methods in regulatory 
applications across the globe are continuously becoming available and 
GSRS is a unique platform to facilitate the discussion and collaboration 
across regulatory agencies to improve oversight and hasten approvals 
for such applications that improve public health. 
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