Initial testing of an ion channel panel for early in vitro detection of seizure liability

K L Rockley¹; R A Roberts¹; M J Morton¹ ¹ApconiX, Alderley Park, Alderley Edge, Cheshire, UK

Seizure liability remains a significant cause of attrition throughout drug development. The resulting loss of competitiveness, delays, increased costs, and considerable safety risk all emphasise the need for improved methodologies to accurately detect seizure liability earlier in drug development. Current methods rely on nonclinical rodent and non-rodent studies. Ideally, novel, high-throughput in vitro methods would provide an earlier prediction of seizurogenic risk that could eliminate liabilities early in discovery while there are still options in chemistry and reduce the reliance on costly animal studies with questionable translation. The involvement of numerous ion channels in seizure provides an opportunity for a new paradigm in screening. Akin to the success of screening against a panel of ion channels to reduce cardiovascular safety liability (CiPA), the involvement of ion channels in seizure suggests that a similar approach to early seizure detection is valid.

1. ION CHANNEL SELECTION

Example evidence for selection of Kv3.1 (KCNC1)

HGNC Approved Gene Symbol: KCNC

Gene-Phenotype Relationships

Cytogenetic location: 11p15.1 Genomic coordina

Epilepsy, progressive myoclonic

	RNA expres	ssion (nTPM) ^I Protein expressi	ion (score) ^I
ĕ	Brain	Q	10 200 2
AA	Eye	0	Cerebral cortex
	Endocrine tissues	• 🕲	
Re Re	aspiratory system		Cerebellum
Proxin	nal digestive tract	0	JAN
Gas	strointestinal tract	۵	Colon
	ver & Gallbladder	0	Liver
Expression Detection All organs	Pancreas	1	1.1.2. A
	Kidney & Urinary bladder	0	Kidney
A A	Male tissues	•0	
	Female tissues	0	Testis
	Muscle tissues	0	
	Connective & Soft tissue	۲	Lymph node
	Skin		
and and	Bone marrow & Lymphoid tissues	0	

UniProtKB/Swiss-Prot Summary for KCNC1 Gene

Voltage-gated potassium channel that plays an important role in the rapid repolarization of fast-firing brain neurons

www.genecards.org

2. SELECTED SEIZURE RELATED ION CHANNELS

Sodium ion channels

Nav1.1 *(SCN1A)* Nav1.2 *(SCN2A)* Nav1.6 *(SCN8A)*

Ligand gated ion channels

GABA $\alpha_1\beta_2\gamma_3$ (GABRA1/B2/G3) Nicotinic $\alpha_4\beta_2$ (CHRNA4/B2) NMDA 1/2A (GRIN1/2A)

Pot Kv1 Kv2 Kv3 Kv4 Kv7 Kv7 КСа КСа

Calcium ion channel Cav2.1 (CACNA1A)

15 seizure related ion channels

NOMENCLATURE AND MOLECULAR RELATIONSHIPS OF K_v CHANNELS

Ion channel Nav1.1 Nav1.2 **Nav1.6** Kv1.1 \checkmark Kv2.1 \checkmark Kv3.1 Kv4.2 (4.3) \mathbf{V} Kv7.2/7.3 \checkmark IN HOUSE TESTING IN PROGRESS Kv7.3/7.5 **KCa1.1 KCa4.1** Cav2.1 GABA $α_1β_2γ_3$ Nicotinic $\alpha_4\beta_2$ /*

= In house testing in progress; $\sqrt{*}$ = validated from literature; AED = anti-epileptic drug

- Typically, the potassium channels were sensitive to more compounds than the sodium channels

- NMDA 1/2A

3. VALIDATION COMPOUNDS

tassium ion channels
.1 (KCNA1)
.1 (KCNB1)
.1 (KCNC1)
.2 (KCND2)
.2/7.3 (KCNQ2/KCNQ3)
.3/7.5 (KCNQ3/KCNQ5)
1.1 <i>(KCNMA1)</i>
4.1 (KCNT1)

	1	2	3	4
4-AP	\checkmark			
Amoxapine				
Amoxicillin				\checkmark
Bupropion				
Chlorpromazine				
Clozapine				
Diphenhydramine				
Enoxacin				\checkmark
Linopirdine	\checkmark			
Paroxetine				
Picrotoxin				
Pilocarpine			\checkmark	
Pentylenetetrazole				
Seroquel				
Strychnine		\checkmark		

4. INITIAL SCREENING DATA

The activity of the validation compounds was assessed in the seizure related ion channels which were stably expressed in recombinant CHO or HEK cell lines • Ion currents were measured by automated patch-clamp (Q patch, Sophion/Ion Works, Molecular devices) at ambient temperature and 6 or 8-point curves were generated A compound that showed activity in our assay was considered a positive hit. An appropriate positive control was included for each ion channel Seizure causing compounds **GABA** antagonists

5. DISCUSSION AND CONCLUSIONS

The 3 sodium ion channels tested have a similar inhibition profile, therefore inclusion of only one sodium channel may be sufficient The GABA-A receptor antagonists and pilocarpine show strong specificity for their targets

The CNS acting drugs exhibit activity on many potassium and sodium ion channels, outside of their accepted MOAs These initial studies highlight the potential utility of a seizure ion channel screening panel to provide mechanistic information and support optimal drug design

Example data: Kv2.1