
Target safety assessments and their role in de-risking drug discovery: Na_v1.7 as an example. Claire Sadler¹, Lauren Eades¹, Richard Knight¹, Michael Morton¹ and <u>Ruth Roberts^{1, 2}</u> ^{1:} ApconiX, Biohub at Alderley Park, UK ^{2:} University of Birmingham, UK

Toxicological Risk Assessment – key findings

 \Box Na_v1.7 gain-of-function mutations in human and mice -> pain and

 \Box Loss-of-function mutations in human Na_v1.7 -> channelopathyassociated insensitivity to pain, itching and complete anosmia Mouse homozygote knockouts anatomically normal with phenotype wholly analogous to human congenital indifference to pain Completely insensitive to painful tactile, thermal, and chemical stimuli

name	Disorders Mutations in gene are associated with
	Epilepsy with febrile seizures, migraine
	Seizure disorders and autism spectrum disorders
	Trigeminal neuralgia & Dravet syndrome
	Myotona & Periodic paralysis disorder
	Long QT syndrome
	Normokalenic & Hypokalenic periodic paralysis
	Mental retardation, pancerebellar atrophy, ataxia
	Episodic pain syndrome
	Hereditary sensory & autonomic neuropathy

Table 2: Data derived from gene mutation disorders shows that there are many closely-related sodium channels each associated with different toxicological risks.

Potential risk of inhibition of Na_v1.7 is anosmia (inability to smell) Due to the role of sodium channels in many physiological processes ensure selectivity for intended channel -> improve toxicological profile

Expert assessment and interpretation of literature and available databases invaluable in identifying and avoiding target-related risks

	Early	Mid	Late
	Selecting between targets	Early risk assessment	Full assessment of risk & mitigation
gy, distribution and Iman mutation phenotype,			
respiratory, cardiovascular, estinal systems + other			
		\checkmark	\checkmark
in vitro, in vivo and		\checkmark	

Table 3: Target safety assessments contain level of detail appropriate to project stage

Inform target selection and/or prioritization early in discovery Combine with emerging nonclinical and clinical data to build a picture that mitigates and manages risks at later stages in the project

