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Highlights
NGS-based genetic testing in the

diagnosis of rare diseases holds

great promise to serve as a first-tier

genetic testing tool in the near

future.

Advancement of NGS technologies

provides many options for diag-

nosing rare disorders associated

with different types of genetic var-

iants. Factors must be balanced in a

‘fit-for-purpose’ implementation.

The accuracy and reproducibility of

NGS should be evaluated in a clin-

ical setting to deliver reliable ge-

netic testing results in different

clinical stages of rare diseases.

Artificial intelligence (AI) will play a

central role in integrating diverse

diagnosis information toward an

enhanced diagnosis power for rare

diseases.
Next-generation sequencing (NGS) technologies have changed the landscape of genetic testing

in rare diseases. However, the rapid evolution of NGS technologies has outpaced its clinical

adoption. Here, we re-evaluate the critical steps in the clinical application of NGS-based genetic

testing from an informatics perspective. We suggest a ‘fit-for-purpose’ triage of current NGS

technologies. We also point out potential shortcomings in the clinical management of genetic

variants and offer ideas for potential improvement. We specifically emphasize the importance

of ensuring the accuracy and reproducibility of NGS-based genetic testing in the context of

rare disease diagnosis. We highlight the role of artificial intelligence (AI) in enhancing under-

standing and prioritization of variance in the clinical setting and propose deep learning frame-

works for further investigation.

Introduction to Rare Diseases

Approximately 7000 rare diseases have been recognized, a substantial number of which are life-

threatening or chronically debilitating [1]. Around 80% of rare diseases are genetic in origin. A single

rare disease affects a small number of the population (defined as < 1/15 000 in the US and < 1/2000 in

Europe) but on aggregate, an estimated 350 million people globally suffer from rare diseases. Most

rare disease patients (50%–75%) show onset at birth or in childhood. As many as 30% of rare diseases

patients die before the age of 5 years. Furthermore, each rare disease patient has been estimated to

cost a total of 5 million dollars throughout their life span.

Incomplete knowledge of natural history (see Glossary) and lack of awareness confounds rare disease

diagnosis. The average length of accurate diagnosis of a rare disease is 4.8 years and involves more

than seven physicians or specialists who may be geographically distributedi. An often-protracted

path to the diagnosis of rare diseases poses an immense burden and psychological distress to pa-

tients and their family and a strong challenge to the current healthcare system [2]. The rare disease

patients and family may benefit from genetic diagnosis. The genetic diagnosis may not be directly

associated with any treatment options, and physicians will continue to treat symptoms, albeit in a

more informed way based on likely prognosis of the case. Therefore, genetic diagnosis could be

of benefit beyond treatment management as it can offer information to families, many of who just

want to know what is wrong with their family member, and can also inform fertility decisions.

Next-Generation Sequencing-Based Genetic Diagnosis: Challenge and Opportunities

Emerging genomics technologies, such as next-generation sequencing (NGS), have been intensively

applied in a research setting but also offer great opportunities in the clinical setting [3–5]. Despite the

remarkable progress of NGS-based genetic testingii for improving the discovery of genetic variants in

rare disease, the translational gap between NGS-based genetic testing and clinical implementation

remains. Many factors contribute to the suboptimal translation of NGS technology into a rare disease

diagnosis. The acceptability and uptake of NGS-based genetic testing depends upon a clear demon-

stration of patient benefit driven by providing physicians with the tools for enhanced decisionmaking.

In this context, real-world evidence in support of NGS-based genetic testing is often limited.

There are several challenges to overcome before NGS can deliver its potential for patients, clinicians,

and society. The key debate is whether NGS-based genetic testing can produce accurate and repro-

ducible results that would support clinical decisionmaking for rare disease diagnosis. To address this,
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Figure 1. The Workflow of NGS-Based Genetic Testing in Rare Disease Diagnosis.

Some key steps and significant challenges are illustrated. Abbreviations: NGS, next-generation sequencing; WES,

whole exome sequencing; WGS, whole genome sequencing.

Glossary
Allelic heterogeneity: the phe-
nomenon in which different mu-
tations at the same locus lead to
the same or very similar pheno-
types. These allelic variations can
arise as a result of natural selec-
tion processes, as a result of
exogenous mutagens, genetic
drift, or genetic migration.
Artificial intelligence: a branch of
computer science dealing with the
simulation of human intelligence
processes by computer systems.
Cell-free fetal DNA: fetal DNA
which circulates freely in the
maternal blood.
Extreme-phenotype sampling: a
selective genotyping design for
genetic association studies where
only individuals with extreme
values of a continuous trait are
genotyped for a set of genetic
variants.
FAIRsharing: a curated, informa-
tive, and educational resource on
data and metadata standards, in-
ter-related to databases and data
policies.
GC content: the percentage of
nitrogenous bases on a DNA or
RNA molecule that are either gua-
nine or cytosine (from a possibility
of four different ones, also including
adenine and thymine in DNA and
adenine and uracil in RNA).
Genome editing: (genome engi-
neering) a type of genetic engi-
neering in which DNA is inserted,
deleted, modified, or replaced in
the genome of a living organism.
In vitro fertilization (IVF): a com-
plex series of procedures used to
treat fertility or genetic problems
and assist with the conception of a
child.
Induced pluripotent stem cells: a
type of pluripotent stem cell that
can be generated directly from
adult cells.
Liquid biopsy: a simple and
noninvasive alternative to surgical
biopsies, which enables doctors
to discover a range of information
about diseases through a simple
blood sample.
Locus heterogeneity: a single
disorder, trait, or pattern of traits
caused by mutations in genes at
different chromosomal loci.
Natural history: the course a dis-
ease takes in individual people
from its pathological onset until its
eventual resolution through com-
plete recovery or death.
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the aim of genetic testing in rare disease diagnosis needs to be better defined. Secondly, there needs

to be a seamless and harmonized relationship among genetic testing service providers, physicians,

and patients. Key steps, parameters, and considerations are summarized in Figure 1.

Clinical Assessment of Rare Diseases

Like the diagnosis of common diseases, diagnosis of rare diseases relies on physical characteristics at

presentation, diagnostic testing, and clinical knowledge of physicians. However, the symptoms of

rare diseases are often masked by more common conditions. Furthermore, rare diseases can be

highly individual with intricate interplay between genetic background and environmental factors.

Moreover, the pleiotropic effects of genes, where one gene does not equal one phenotype or

disease, makes a clinical diagnosis increasingly complex. Also, the physician’s awareness may

point toward more pathological-based clinical tests for disease diagnosis, not just genetic testing.

However, the phenotypic and locus heterogeneity makes rare diseases uncategorizable based on

standard histological and pathological features. Lack of experience with rare diseases and an

absence of case reports as references poses an obstacle for a physician to make a diagnosis. Conse-

quently, rare disease patients experience a long referral loop from one physician/specialist to

another, which could lead to inappropriate management and disease progression. Thus, it is timely

to advocate for genetic testing strategies, particularly NGS, for diagnosing rare diseases (Box 1).

Selection of a Fit-for-Purpose NGS Assay

Research is ongoing regarding which NGS-based genetic approach would be most appropriate in

the clinical setting. Rapid advancements in technology open up new possibilities but at the same

time pose technical challenges as each innovation is evaluated and the optimum approach to

NGS-based screening is repositioned. Clinical implementation of a fit-for-purpose NGS test in rare

diseases is multifactorial but major contributing factors are knowledge of the rare disease, speed

of delivery, and cost. Furthermore, an optimized experimental design is key in improving the diag-

nostic power and clinical utility of NGS-based genetic testing (Box 2).

Panel versus Whole Exome Sequencing/Whole Genome Sequencing

An incomplete knowledge of the natural history of each rare disease can make a substantial propor-

tion (�60%) of rare diseases intractable and undiagnosable [6,7]. Panel-based NGS or targeted

sequencing tests are designed to reveal causal mutations for genes known to be associated with a
Trends in Genetics, November, Vol. 35, No. 11 853



Box 1. A Glimpse of Genetic Diagnostic Testing for Rare Diseases

Since the inception of NGS technology, various applications are emerging and have proven successful in diag-

nosing a proportion of rare diseases in both research and clinical arenas [3,18,19,44]. Numerous genetic

testing services were established globally, and the market size is expected to be valued at USD 22 billion in

2024ii. Based on Orphanet data statistics (version 1.2.11, accredited by Apr. 12th, 2018) [86], there are a total

of 11 548 diagnostic tests available provided by 522 institutions mainly from Europe, which primarily focus on

the diagnosis of the known causative gene. The number could be doubled or tripled when combining the data

from the US and PR China. The clinical purpose of these diagnostic tests varied (Figure S1A in the supplemental

information online). Approximately 86% of 11 548 genetic diagnostic testings are for postnatal diagnosis.

Somatic genetics for pediatric cancers and antenatal diagnosis occupied 5.24% and 5.05% of all the diagnostic

measurements, respectively. It was not surprising that preimplantation diagnosis accounts for less than 1% of

available diagnostic tests due to its technical immaturity.

Furthermore, Sanger sequencing, as a critical orthogonal verification technology, is still widely adopted by the

community (55%). This panel-based sequencing has incrementally moved toward dominating the market (14%)

(Figure S1B in the supplemental information online). The diagnostic tests utilized for detecting genetic muta-

tion, including SNV, deletion, and duplication within the coding region occupied nearly 92% of all available

genetic tests (Figure S1C in the supplemental information online). These diagnostic tests could be used for

diagnosing 2321 genes that were associated with 3446 rare diseases. The 3446 rare diseases covered a broad

spectrum of rare disease categories based on Orphanet rare disease classification (Figure S1D in the supple-

mental information online). The top five rare disease categories with available diagnostic tests were neurolog-

ical diseases, developmental anomalies during embryogenesis, inborn errors of metabolism, eye diseases, and

bone diseases.

Preimplantation genetic diag-
nosis (PGD): the genetic profiling
of embryos prior to implantation
and sometimes even of oocytes
prior to fertilization. PGD is
considered in a similar fashion to
prenatal diagnosis.
Preimplantation genetic
screening: similar to the definition
of PGD but for screening
purposes.
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specific rare disease [8]. Since the NGS gene panel is predesigned or expert-selected, ultra-deep,

uniform coverage allows for high sensitivity and also for specific variant calling for rare genetic

variants. A panel-based NGS test has been successfully applied to rare diseases with genetic hetero-

geneity, including allelic heterogeneity [9] and locus heterogeneity [10], overlapping phenotypes

[11], and with causal genes involved in the common disease-related pathways [12].

Clinical whole exome sequencing (WES)/whole genome sequencing (WGS) is usually applied to

patients with negative results based on conventional genetic tests or panel-based NGS test.

Compared with panel-based genetic testing approaches that are locus-specific or focus on variants

for a few genes, WES/WGS can provide complete genetic information in support of rare disease

diagnosis [2]. The comprehensive ability to assess diverse types of genetic variants across the

genome enables more precise identification of pathogenic variants to further influence diagnosis

and treatment.

Increasing evidence shows that NGS-based diagnostic testing is superior to the recommended first-

line genomic testing tools from the perspective of both diagnostic rate and clinical utility [13]. Based

on a meta-analysis of 37 rare genetic disorders studies with 20 068 children conducted using WGS,

WES, and chromosomal microarray analysis (CMA), the diagnostic rate of WES/WGS (0.36 and

0.41, respectively) is significantly higher than that of CMA (0.10). Furthermore, clinical utility could

be increased by approximately 50%–80% from CMA to WES/WGS [14]. The pace of rare disease-

related causal genes discovered by WES/WGS has steadily increased to account for more than

85% of causal gene discovery [15,16]. Encouragingly, there have been increasing attempts to explore

the opportunities for positioning WGS as a first-tier genetic test [17].

WGS, as a non-hypothesis driven approach, could be widely utilized to comprehensively assess the

genetic variant picture of rare disease patients. However, validated and orthogonal technologies

are strongly recommended to be applied to verify the detection results. Those validated genetic find-

ings allow researchers to focus on and provide the diagnosis in a specific genetic region. Although

WGS has been gradually adopted in the clinical setting for rare disease diagnosis, panel-based

sequencing is still valuable for deeper deciphering the genetic complex in a specific area. Therefore,

a composite of WGS and panel-based sequencing testing are suggested, which may augment the

clinical utility.
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Box 2. Experiment Design for NGS-Based Genetic Testing

Panel Design

The gene-panels designed for rare diseases fall mainly into three categories of disease-specific, organ-specific,

or a universal panel. Gene panels typically include a mixture of causative genes located in genome regions with

different GC contents, associated with differing technical difficulty in detecting genetic variants, with further

impact on the diagnostic rate. As gene panels are being adopted for clinical diagnosis for rare diseases and are

incrementally becoming the first-line option for causative variants identification, panel design should be

optimized to permit better clinical adoption. First, gene panel design should take a comprehensive

perspective on the genome properties of included genes (i.e., variant type and GC content), facilitating gene-

capture tool selection, sequencing depth determination, and data interpretation. Second, consideration

should be given to the likelihood that a universal panel may not yield a better diagnostic rate [87]. The diag-

nostic rates among the different panels ranged from 31.3% to �57% [88,89] and were not correlated with the

number of genes included in the panel. Finally, a dialogue should be established, aiming to optimize panel

development for clinical diagnosis allowing different stakeholders to align and promote diagnosis success.

Trio versus Proband

The current diagnosis rate of NGS-based testing for rare diseases ranges from approximately 25% to 52%,

depending on the rare disease type, availability of biological family members (i.e., trio-based or proband), and

analytical strategies [90], where trio-based refers to affected child and unaffected parents and proband refers

to the affected individual in a pedigree tree. The causative genetic variants of rare disease detection are mainly

based on sequencing with population-based sampling (e.g., extreme-phenotype sampling) or trio-based

sampling. WES/WGS with a trio strategy allows for more sensitive identification of de novo mutations (DNM)

that are present only in the child and the establishment of the phase of variants in recessive or imprinted

disorders by inheritance [91,92]. For example, WGS was employed for the clinical diagnosis of 217 individuals

with a broad spectrum of diseases. In this work, it was suggested that the diagnostic rate could be significantly

improved for family trios (57%) compared with proband cases (34%) [90]. Another example is WES for diagnosis

of 278 infants in intensive care units within the first 100 days of life, yielding a 36.7% diagnostic rate and

enabling effective medical management for 52% of patients with a diagnosis. A higher diagnostic rate at an

earlier age could be achieved with critical trio samples offering a more likely benefit from subsequent medical

procedures [3].
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Time to Delivery

Turnaround time is one of the most critical factors for the clinical implementation of NGS diagnostics

in rare diseases. For example, timely diagnosis of rare diseases in the neonatal intensive care unit

could avoid further invasive, and at times misplaced, investigations for the neonate. The time to

delivery of results ranged widely from 50 hours up to 58 weeks for NGS-based diagnosis of different

rare diseases, depending on the teamwork of clinicians, bioinformaticians, and molecular geneticists

and, more importantly, a close liaison among the team members [14]. Furthermore, sequencing

depth as an essential parameter correlated with diagnostic accuracy. Ultra-depth sequencing also

may improve diagnosis rate but at a higher cost, with demands for increased data storage and a

possible slower data analysis.

Cost

NGS technologies continue to evolve, and the trajectory of NGS applications is tending toward use as

a clinical tool, enabled by the continuing falling price [18]. Unlike Sanger sequencing, NGS allows us to

sequence millions of fragments simultaneously per run and detect genetic variants for multiple genes

in parallel. Two major paradigms exist in NGS technology. Short-read sequencing is a cost-effective

and high accuracy tool for small variant detection. By contrast, long-read sequencing, including Pacific

Biosciences, Oxford Nanopore Technology, and Ion Torrent, may be a good option for de novo

genome assembly and complex Structural variants (SVs). However, the costs and error rates in variant

detection for long-read sequencing limit its routine use in the clinical setting. Furthermore, the legacy

conventional genetic testing approaches such as array-based genotyping, NanoString, and qPCR are

less expensive [19] and may still be useful for less complicated variant detection [2,20,21].
Trends in Genetics, November, Vol. 35, No. 11 855



Box 3. Variant Interpretation Guidelines

ACMG-AMP guidelines for interpreting sequencing variants have been widely adopted by clinical laboratories

[23]. The key recommendation within the ACMG-AMP guidelines is the development and use of a systematic

scoring system for prioritizing support evidence of variants coupled with a five-tier scheme for variant classifi-

cation [22]. The current five tiers of variant classification in Mendelian genetics include pathogenic (P), likely

pathogenic (LP), uncertain significance (VUS), likely benign (LB), and benign (B), but with more optional tiers.

However, these tiers are currently not accepted by the public clinical variant databases such as ClinVar [93].

Based on a survey study on clinical adoption of ACMG-AMP guidelines, approximately 22% of surveyed lab-

oratories defined variants in the VUS category with additional terms such as ‘topline VUS’ and ‘uncertain clinical

significance, possibly pathogenic’, highlighting the need for further standardization and improvement of

variant terminology for better clinical applications [23].

Furthermore, the thresholds for defining the minor allele frequency and multiple de novo occurrence are also

disease-specific and data resource-related [94]. For example, the Clinical Genome RASopathy clinical domain

working groups posted additional guidelines to compliment further the ACMG-AMP guidelines, in which the

unpublished disease-specific clinical genetic testing data were employed to improve the accuracy of scoring of

the strength of variants in different subcategories. Furthermore, some lab-based criteria still exist for variant

interpretations. Based on the meta-analysis of concordance between lab-based standards and ACMG-AMP

guidelines in nine laboratories, a high concordance (i.e., 79%) was established within each laboratory but

only 34% concordance was obtained across the laboratories [95].

Trends in Genetics
Clinical Management of Genetic Variants

Although NGS provides a complete genetic makeup of rare disease patients, it also poses a

significant challenge to pinpoint a subset of clinically relevant genetic variants. The filtration and

annotation of genetic variants includes multiple components, and the diagnostic decision on inclu-

sion or exclusion of variants depends heavily on data resources and the functional annotation algo-

rithms employed [2]. More importantly, the validation of candidate genetic variants mainly relies on

whether there is sufficient supporting evidence of their clinical relevance and functional impact.

Moreover, the strategy adopted for decision making is also profound. The hard cut-off strategy for

variant selection is mainly based on allele frequency or read depth, which could omit rare genetic

variants below the predefined threshold representing pathogenic meaning. Thus, the variant priori-

tization strategy could be utilized for ranking in order the variants regarding their potential clinical

impact. Furthermore, WES/WGS has a high probability of incidental or secondary findings (ISFs), add-

ing another layer of complexity for clinical management of genetic variants. Standards and recom-

mendations have been developed by the professional communities, such as the American College

of Medical Genetics and American College of Pathologists (ACMG-AMP), as educational resources

and guidelines to facilitate clinical laboratories managing sequencing variants [22]. However, further

refinement and update of these guidelines is needed to continually improve the accuracy and reli-

ability of variant annotation, expand the standard terms for clinical variant classification, to promote

spontaneous genetic information submission, and to call for redundancy standards [23] (Box 3).

Public Variant Databases

Variant databases support the curation, accumulation, and clinical interpretations of disease-associ-

ated variants, a crucial adjunct to clinical variant management. Every individual has >20 double-null

genes and >150 heterozygous null genes, so even a complete and perfect WGS does not declare the

disease-causing variant. Therefore, the public variant databases are imperfect, however, they are still

a good resource for facilitating decision making of variant selection [24]. The current public human

variant databases are mainly divided into two categories: population-based resources and

disease-specific variant atlases. Population-based databases provide information on the variant

frequency in large populations. Although efforts have been made to expand the number of healthy

individuals and to drive population stratification, certain ethnic populations, age groups, and gen-

ders remain under-represented. For example, the minor allelic frequency of minority groups such

as African Americans is significantly under-represented compared with populations with European

ancestry [25]. Furthermore, the population-based genetic variant database may include some

samples with a disease or carry some phenotypic correlates of the disease. For example, the Exome
856 Trends in Genetics, November, Vol. 35, No. 11
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Aggregation Consortium [26] studied 60 706 individuals of diverse ancestries and found 3230 genes

with near-complete depletion of predicted protein-truncating variants. However, 72% of these genes

have not been reported in public variant databases such as Online Mendelian Inheritance in Man and

ClinVar databases. This information could be valuable as criteria (e.g., the hard cutoff filtering) to facil-

itate identification of candidate rare disease-causing variants.

Moreover, few variant databases incorporate family-based trio, quartet, or pedigree samples, all of

which are of great importance for distinguishing de novo variants [27]. The disease-based variant

database is an excellent resource to curate the knowledge of rare disease-related variants in the

patient level. Disease-based variant databases suffer a relatively high error rate and have insufficient

statistical power for specific diseases or phenotypes (e.g., pairs of genes that cause disease), leading

to an unreliable assignment of pathogenicity. Furthermore, more detailed information on clinical site

description, submission agreement, and data governance should be a mandatory requirement for

data sharing and curation to enhance the utility of public variant databases [28]. Some community

health initiative efforts are currently underway to sequence patient populations and incorporate

various lifestyle choices and patient information to make the data available for diagnostic purposes.

For example, MyCode Initiative is promoting disease diagnosis by analyzing the DNA of patient-par-

ticipants for various diseases to advance precision medicine [29]. Another example is GeneMatcher,

which aims to collect rare disease patient samples sharing the variants from the same candidate

disease genes. These efforts could greatly improve the quality and representation of genetic variants

curation for specific rare diseases [30].
Bioinformatics Analysis and Statistical Methods

Bioinformatics approaches have been widely utilized to filter out variants without functional impact and

annotate variants regarding their causative effect with specific phenotypes [31]. The pros and cons of

those in silico filters and annotation tools have been intensively discussed elsewhere [32]. Concerns

regarding inconsistency among these methodologies have arisen, mainly attributed to parameters

such as inconsistency of input and output variant format, lack of a unified measure on predictive power,

and frequency of annotation database update. Consensus and cloud-based variant functional prediction

platform have been introduced, including Combined Annotation-Dependent Depletion (CADD) [33] and

Bystro [31], which aim to provide more consistent and reproducible variant annotation results. Moreover,

clinical guidelines were also developed by ACMG/AMP for evaluation of variant interpretation tools in

diagnostic laboratories, which also suggested the combinations of in silico algorithms with an increased

concordance for variant annotation in a clinical setting [34]. However, the computational-based variant

prediction tools are not capable of providing definitive proof regarding the clinical relevance of the candi-

date variants. Some limitation of variant prediction tools, such as inaccurate function prediction of gain/

loss of function, need further improvement. Besides, the fast-moving pace of NGS technologies causes

rapid movement of scientific evidence. The question raised is how to uptake the novel technologies

and findings to revisit and reannotate the existing knowledge, which is of great importance for better de-

ciphering the clinical relevance of candidate variants [35,36].
Incidental Findings

Management of ISFs derived from WES/WGS is the subject of fierce debate in the clinical setting,

where ISFs refer to genetic results that are unrelated to the initial purpose of testing. The capture

of ISFs depends on the physician and the willingness of patients and their families to share informa-

tion, which limits the consensus reporting system implemented [37]. Recommendations on diag-

nosing ISFs have been proposed and updated by ACMG, resulting in a list of 59 medically actionable

genes recommended for return in clinical genomic sequencing [38]. However, some actionable genes

included in the ACMG recommendations are adult-onset specific, and other actionable gene-related

conditions are not aging specific, which poses additional challenges when applying ISFs to pediatric

patients [39].

Risks in reporting ISFs include spurious courses of action, such as parents pursuing IVF with a PGD for

a variant that may not lead to disease [39]. Consequently, it will be important to develop
Trends in Genetics, November, Vol. 35, No. 11 857



Box 4. Technical Barriers to NGS-Based Genetic Testing in Rare Diseases

Accuracy

One of the significant difficulties for NGS technology is to detect rare variants with extremely low allele fre-

quency accurately. For example, causative genetic variants, such as de novo mutations, were discovered in

various rare diseases with a shallow frequency and a low penetrance rate [96]. The mutation rate of de novo

mutations (DNM) is estimated at around 1–3 3 10–8 per base pair per generation, although the rate may vary

across different genome locations, families, and patient ages [97]. The error rate of NGS is in the range of �1%

to 0.1% or even lower in optimal scenarios [98], which is much higher than the mutation rate of DNM. It has

been a notable challenge for accurate and reliable DNM identification.

Detection of complex variants such as SVs and large CNVs is another hurdle for accurate NGS genetic

testing [99–101]. The SVs detected by short-read sequencing approaches suffer low sensitivity (�10%

to 70%), and high false positive rates (up to 89%), resulting in insufficient detection power for complex

or nested SVs with breakpoints in repetitive regions [62]. The long-read single molecule sequencing

technologies have the potential to increase the resolution and sensitivity of SV detection. However, relatively

high error rates in Pacific Biosciences (PacBio) with �10%–15% and Oxford Nanopore with �5%–20% still

exist [18].

Reproducibility

Reproducibility is vital for a successful clinical diagnosis. NGS-based genetic testing is no exception.

Complexities in NGS-based genetic testing include samples and library preparations, gene capture, bioin-

formatics pipelines, and results interpretations, all of which confound the generation of repeatable and

reproducible results. Each step is subject to some uncertainty. Therefore, a rigorous examination of accuracy

and reproducibility is imperative to underpin clinical implementation in rare diseases.

Trends in Genetics
recommendations and standards for managing the return of information fromgenomic sequencing in

children, especially in early life, to ensure the best interests of the family. For example, the BabySeq

Project is a randomized trial for exploring the medical, behavioral, and economic impacts of

sequencing-based genetic testing on pediatric patients and the further improvement of ISF manage-

ment [40].

Standardizing Practices for NGS-Based Genetic Testing

Accurate and reproducible NGS data are a prerequisite for reliable clinical diagnosis. NGS technol-

ogies have reshaped the potential for genetic-based diagnosis at an astounding pace and the pros

and cons of different sequencing platforms have been intensively discussed [4,18]. Intrinsic

sequencing errors and artifacts introduced during sample and library preparation cause inaccurate

and irreproducible variant detection, especially for low-frequency and complex structural variants

(SVs) (Box 4). Feasible and effective procedures should be developed for enhancing clinical adoption

of NGS-based genetic testing for rare disease diagnosis (Figure 2).

Biological Certified Reference Materials

Systematic errors could be addressed using a reference standard approach to evaluate diagnostic

performance and reproducibility of diagnostic testing, and to establish best practices for variant call-

ing [41]. A wide range of professional organizations has recommended utilizing reference standards

to calibrate NGS measurements routinely [16,17].

Efforts have been made to develop reference materials, including well-characterized cell-based

genetic materials [42–44] and synthetic spike-in controls [45,46]. Many laboratories have moved to

apply the Genome in a Bottle Consortium (GIAB) reference samples (e.g., NA12878) as process con-

trols to estimate detection limits, ensure repeatability and reproducibility, and calibrate their NGS

workflow [47]. However, there are concerns regarding how well these reference samples, derived

from cells of healthy donors, represent the complex variant distribution of rare diseases patients in

a clinical setting.
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Figure 2. The Outstanding Challenges and Potential Solutions for Enhancing Accurate and Reproducible.

Next-Generation Sequencing (NGS)-Based Genetic Testing. NGS-based genetic testing has great potential for

application to different clinical stages of rare diseases, including IVF, PDS, and PDG, and different tissues such

as FFPE and liquid biopsies. Detailed solutions for improving the accuracy and reproducibility of NGS-based

testing are suggested: development of biological certificated references and standardization of best practice of

NGS data analysis. Abbreviations: ACMG-AMP, American College of Medical Genetics and American College

of Pathologists; FFPE, formalin-fixed, paraffin-embedded; GIAB, Genome in a Bottle Consortium; IVD, in vitro

diagnostic; IVF, in vitro fertilization; NGS, next-generation sequencing; PGD, preimplantation genetic diagnosis;

PGS, preimplantation genetic screening.
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Commutability, defined as the ability of reference materials to mimic patient samples, is themost crit-

ical parameter in qualifying reference materials [41]. Here, we recommend developing biological

certified reference materials for evaluating the accuracy and reproducibility of NGS testing systems

in a clinical setting as follows:

1. Development of pan-ethnic referencematerials. It has been demonstrated that the distribution

of genetic variations across the global populations varies, resulting in difficult regions, such as

extreme GC content, low complexity, or repetitive sequences differences [48]. Single ethnic

population-based reference material may not be appropriate for covering genetic variants

associated with different rare diseases with broad geographical distribution and diverse epide-

miology. Therefore, a drive toward coordinated, local implementation on the development of

referencematerials from different ancestries is highly encouraged to improve their relevance to

the local populations [47].

2. Reference materials spiked to take account of matrix effects. The variant distribution within

formalin-fixed, paraffin-embedded or liquid biopsy-based samples from rare disease patients

may be very different to that seen in normal tissues [49]. For example, NGS-based genetic

testing has been applied to tissues with complex matrix effects, including in vitro fertilization

(IVF), preimplantation genetic diagnosis (PGD), and preimplantation genetic screening to

help patients to select embryos free of rare diseases [50–54]. Furthermore, liquid biopsies

such as cell-free fetal DNA in maternal plasma also holds promise for the development of

noninvasive PGD testing in rare disease diagnosis [55,56]. Therefore, the reference materials

with different degrees of matrix effects should be developed to better understand the pros

and cons of NGS-based genetic testing in real-world applications.
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3. Rare disease-specific reference material. Healthy donor-based reference materials may only

cover a tiny proportion of causative variants of rare diseases. Cells from patient samples

such as human induced pluripotent stem cells harboring pathologic variants may be a feasible

solution to refine the development of reference material. Efforts such as the Genetic Testing

Reference Materials Coordination Program (GeT-RM) aim to coordinate a self-sustaining com-

munity process to improve the availability of appropriate and characterized referencematerials

for inherited diseases and pharmacogenetics [57].

4. Genome editing for reference material development. Advances in bioengineering, including

genome editing, can be used to introduce specific genetic variants into cells, offering the

opportunity to develop a synthetic referencematerial that includes various rare disease-related

causative variants [58]. However, careful verification of the engineered cell line to account for

unexpected off-target variants is a requirement [59]. Furthermore, confidentiality concerns

for maintaining the anonymity of de-identified patients arose and need a better consideration.
Best Practice for NGS Data Analysis

Bioinformatics is an essential component of NGS-based genetic testing. The NGS bioinformatics

pipeline consists of multiple steps, including sequencing alignment, variant calling, variant filtering,

variant annotation, and prioritization for performing appropriate analyses. With developed reference

materials, GIAB, along with Global Alliance for Genomics and Health (GA4GH), is working on gener-

ating benchmarking data to serve as the baseline to establish best practices in NGS data analysis

[42,60].

Lessons learned from the GIAB project are beneficial to understand the pros and cons of sequencing

technologies better and to standardize NGS data analysis further. First, normalization of the variant

calling format from different bioinformatics pipelines is a prerequisite for further comparison of

performance. GA4GH developed a standard procedure to standardize variant representation and

suggested cloud-based bioinformatics pipeline management. Second, best practice is not solely

dependent upon the utilization of the best bioinformatics pipeline. Based on the results of

precisionFDA challenges, the performance (defined as recall and precision) of NGS bioinformatics

pipelines are variation type and genome content dependent. For example, the top-ranked two bio-

informatics pipelines including DeepVariant [61] and GATK-best practice in precisionFDA challenges

show higher concordance (99.7% versus 76.5%) in and outside high-confidence regions, indicating

that the big challenge for performance improvement resides in difficult genome regions. Third, the

standardization of bioinformatics variant calling pipelines for complex SVs, large copy number

variants (CNVs), and de novo mutation is imperative. The primary focus of GIAB is small variants,

such as SNVs and small indels/deletions. Although intensive research has been conducted to provide

bioinformatics solutions to improve the accuracy of variant calling for SVs [62,63] and de novo genetic

variants [64,65], a comprehensive assessment and evaluation of these methods was not routinely car-

ried out. Finally, a reanalysis of NGS data should be routinely conducted, along with the update of

tools, reference genomes, and annotation databases [35,36].
Good Laboratory Practice for Sequencing-Based Genetic Testing

NGS data analysis requires extensive data storage, data transfer, and computational resources. The

development of a consistent framework for managing the standards, repositories, and policies is

imperative to underpin a reproducible and reusable NGS-based workflow. Community efforts have

been made to standardize the bioinformatics pipelines for establishing good laboratory practice

(GLP) for clinical NGS application. The Next-Generation Sequencing: Standardization of Clinical

Testing II informatics workgroup have presented their recommendations for the design, optimiza-

tion, and implementation of an informatics pipeline for germline mutation detection in the clinical

NGS field to comply with the existing quality standards and regulations [66].

Furthermore, the Association of Molecular Pathology, with organizational representation from the

College of American Pathologists and the American Medical Informatics Association, has developed
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a set of 17 best practice consensus recommendations for the validation of clinical NGS bioinformatics

pipelines, with emphasis on the training and qualifications of the molecular professional for improved

NGS testing [67]. Moreover, the US FDA finalized two guidances to accelerate the development of

reliable, beneficial NGS-based tests for making innovative and accurate testing technologies avail-

able to patients as efficiently as possibleiii. Efforts such as FAIRsharing to maximize the community

efforts toward a better adoption and visibility of standards could be an effective way to promote

GLP [68].

Artificial Intelligence for Enhancing NGS-Based diagnosis

The impact of artificial intelligence (AI) is global and multidisciplinary. Today, AI, and deep learning

in particular, has been widely applied in different biomedical frameworks [69,70] and has been revo-

lutionizing the healthcare system [71] as well as other fields outside of the scope of this paper [69–73].

NGS-based diagnosis consists of various steps, where AI has begun to show its merits in improving

variant calling accuracy, augmenting variant prediction, and enhancing the physician-friendliness of

electronic health record (EHR) systems (Table 1).

Variant Calling

Variant calling is the process to identify different types of genetic variants from NGS data. Although

various variant calling algorithms have been developed, the performance of most variant callers is still

suboptimal, especially in a clinical setting. Deep learning-based algorithms provide an alternative

scenario for variant calling. For example, DeepVariant developed by Google transforms the variant

calling problem into an image recognition task by imagizing the BAM file and modeling with a con-

volutional neural network (CNN). The performance of DeepVariant is superior to most of the conven-

tional variant calling algorithms for identifying SNV and small indels [61]. Furthermore, A SpliceAI, a

32-layer deep neural network (DNN) was developed for predicting de novo mutations (DNM) with

predicted splice-altering consequence in patients with autism and intellectual disability, which paves

the way for the application of AI on complex genetic variant prediction [74].

Variant Prediction

One of the hurdles for clinical implementation of NGS-based diagnosis is the difficulty of distinguish-

ing pathogenic mutations from benign genetic variants. Although a lot of variant effect prediction

tools have been developed to fill the gap, it is still a limiting factor that needs to be further established

within the decision-making process [75]. Deep learning has been showing some promise in this field

to augment the variant prediction accuracy. One example is the deleterious annotation of genetic

variants using neural networks (DANN), which modified the CADD tool with a DNN model for variant

prediction. The DANN outperformed the original CADD with support vector machine (SVM) classifier

with a 14% relative increase in the area under the curve (AUC) metric [76]. Another interesting study

led by Sundaram et al. developed a DNN model combining common variants derived from human

and other non-human primate species to identify pathogenic mutations in rare disease patients.

The proposed model achieved an 88% accuracy and found some unreported genes associating

with intellectual disability [77].

EHR

Connecting genetic testing with EHR systems is a key step in bringing genomics into clinical care [78].

Meanwhile, the EHR system has served as a hub to incorporate diverse digitized health information,

enabling better clinical decision making and precision medicine. The question is how to fuse data

profiles of differing complexity in the EHR system to augment diagnosis in a clinical setting. Advances

in AI may provide a solution.

Free-Text and Genetic Variants

The physician-friendliness of EHR data is the key to boost its utility. For example, physician notes, also

known as patient narratives, were used to summarize the diagnosis for patients based on different

testing results. However, the language used in the patient narrative is free-text in nature and
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Models Algorithms Notes Refs

Variant calling

DeepVariant Deep convolutional neural

network (CNN)

Variant calling from short-read sequencing by reconstructing DNA alignments as an image. [61]

Clairvoyante Deep CNN A multitask five-layer convolutional neural network model for predicting variant type

(SNP or indel), zygosity, alternative allele, and indel length from aligned reads.

It could be applied in long-read sequencing data such as PacBio and Oxford Nanopore

[102]

DeepNano Deep RNN A deep recurrent neural network for base calling in MinION nanopore reads, which

achieves a comparable performance to Nanonet base caller provided by Oxford Nanopore

[103]

Variant prioritization and annotation

Skyhawk Deep neural network (DNN) An artificial neural network-based discriminator that mimics the process of expert

review for clinically significant genomics variants identification

[104]

DANN DNN A DNN algorithm for predicting deleterious annotation of genetic variants, which is

superior to the state-of-art algorithms such as support vector machine

[76]

DeepSEA Deep CNN A deep CNN model for prediction of the noncoding-variant effects de novo from

sequence and further applied to autism spectrum disorder-related variant functional

prediction.

[105]

Phenotype–genotype association

DeepGestalt Deep CNN A deep CNN model to distinguish more than 200 rare diseases based on patient face

images, which could also separate different genetic subtypes in Noonan syndrome

[80]

DeepPVP DNN A deep DNN model for variant prioritization by integrating patients’ phenotype information. [106]

Table 1. Examples of Deep Learning for Genetic Variants
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challenging to employ for systematic analysis of hidden knowledge tied to genetic testing results.

AI-based text-mining strategies have been widely applied for different tasks, including information

retrieval, text summarization, question and answering, and sentiment analysis. Some deep word

embedding algorithms, such as word2vec and GloVe, have been developed to map the words or

phrases to the vectors of numeric values, which provides an opportunity to integrate text-based

information with image and genetic information (Figure 3A). For example, Wang et al. proposed a

novel multilevel attention model named Text-Image Embedding Network (TieNet) to combine clin-

ical image and free-text radiological reports by using deep hybrid CNN and recurrent neural network

(RNN) models. The proposed TieNet has been successfully applied for auto-annotation of chest X-ray

with the associated common thorax disease subtypes, with a high AUC value of 0.9 [79].

Phenotypes and Genetic Testing Association

Deep learning has been widely applied to medical image diagnostic systems, yielding better

diagnostic performance than radiologists and pathologists [71]. Very recently, Gurovich et al. [80]

proposed a DeepGestalt framework to identify facial phenotypes of rare genetic disorders with a

CNN embedded. DeepGestalt comprised over 17 000 images for more than 200 rare diseases and

achieved 91% accuracy. More importantly, the model could separate different genetic subtypes in

Noonan syndrome, shedding light on the correlation of phenotypes with genotypic information for

variant prioritization, and also demonstrated the deep CNN framework for the association analysis

between phenotypic data and genetic variants (Figure 3B).

Omics Data Fusion

Efforts have beenmade to integratemultiple layers of omics data for prioritizing causative variants in rare

diseases [81]. Furthermore, the concept of digital medicine continues to emerge, and wearable
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Figure 3. Potential Deep Learning Strategies for Improving the Variant Prioritization in Clinical Rare.

Disease Diagnosis. Three deep learning models are proposed, including (A) a deep convolutional neural network

model to associate phenotypic testing results such as pathological images and digital wearable sensor signals with

genetic variants from next-generation sequencing (NGS); (B) a data fusionmodel that employs a deep autoencoder

by exchanging high representation code between omics data profiles to augment the prediction power; and (C) a

deep recurrent neural network (RNN) model for linking electronic health records (EHRs) processed by word2vec

and genetic variants from NGS for prioritization.
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biosensors have begun to show their potential to provide continuous, dynamic, and real-time

physiological information for clinical diagnosis [82]. Deep learning has a great advantage in linking

high-dimensional data of a different nature and with different levels of complexity to gain maximal

predictive power. For example, a deep Autoencoder model was proposed by integrating gene expres-

sion and CNV data from high-risk neuroblastoma patients with different subtypes showing significant

survival differences, which yielded an improved survival curve compared with other state-of-the-art clas-

sifiers [83]. One of the interesting deep learning frameworks, Deepfake, is a technique for human image

synthesis based on generative adversarial networks and is capable of combining and superimposing ex-

isting images to give a new representationiv. Inspired by theDeepfake framework, we envision a concep-

tual deep learning framework for data fusion of multiple layers of information, which may potentially

improve variant prioritization, although further investigation is a ‘must’ (Figure 3C).

Database Storage and Management

AI and NGS are a golden combination since AI requires the big data and NGS generates big data.

Along with the large amount of NGS data, other diagnosis-related testing data is being amassed,

bringing up the issue of proper data storage. Clinical diagnosis laboratories are not capable of

handling increasingly accumulated data. Additionally, data storage requires a sophisticated infor-

matics infrastructure to store the data securely. More and more efforts have been made to bring

cloud-based services in compliance with health privacy laws for NGS data storage, along with harmo-

nizing data privacy across different stakeholders [84].

Despite the potential for AI to enhance clinical diagnosis in rare diseases, the complexity and diversity

of clinical data profiles may pose many challenges for AI. That is due to the fact that developing an AI
Trends in Genetics, November, Vol. 35, No. 11 863



Outstanding Questions

How do we increase the visibility

and adoption of developed stan-

dards and guidance for clinical im-

plementation of NGS-based ge-

netic testing?

How do we adapt best practice to

promote the NGS-based genetic

testing in a clinical setting?

How do we develop a variant selec-
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model for rare disease diagnosis requires a training set of many patients with known clinical outcomes

(i.e., labeled data).

However, the curation of labeled data needs manual efforts from the domain expert to delineate dis-

ease-specific information. Furthermore, although AI is capable of integrating diverse types of clinical

data for augmenting prediction power, careful data annotation and standardization is still the key to

warrant the establishment of a high quality model. AI is accelerating the transformation in clinical

diagnosis from rule-based strategies to more individual-based or data-driven recommendation.

However, AI-based approaches should be positioned as a ‘last resort’ and not as an assistance

tool until the clinical utility is well-proven and the regulation and standardization on the clinical appli-

cation of AI are well-established.

tion framework to agilely imple-

ment the hard cut-off and

prioritization?

How do we effectively combine ge-

netic testing with omics and pheno-

typic information to understand the

etiology of rare diseases, better to

improve diagnosis rates?

How do we work with different

stakeholders toward harmonization

and adoption of NGS-based ge-

netic testing?
Concluding Remarks

NGS technologies have tremendous potential to serve as the first step in genetic testing in rare

disease diagnosis, although a lot of concerns and challenges remain (see Outstanding Questions).

As described in this review, clinical implementation of NGS-based genetic testing depends on

many factors but also on some important considerations not covered here, such as genetic coun-

seling for harmonizing and coordinating the patient–physician relationship, ethnic issues for adopt-

ing and delivering genetic testing, and educational efforts for promoting the acceptance of genetic

testing in a clinical setting [85]. Today, genetic tests are becomingmore mainstream andmore acces-

sible to individuals and to physicians. Accordingly, there is much debate on how to deal with direct-

to-consumer genetic testing (DCGT) in a clinical setting. Difficulty in the interpretation of genetic

testing results, and issues relating to privacy and confidentiality, suggest that DCGT should be

discouraged in the diagnosis of rare diseases at present.

The clinical application of NGS is approaching an upward trajectory as more and more experi-

ences and confidence are accumulated through real-world applications. The high-potential appli-

cation of NGS-based diagnosis in noninvasive prenatal testing, complex genetic variants detec-

tion, and preventive genetic screening has promoted and improved in a clinical setting.

Furthermore, the application of NGS technologies will be expanded to different liquid biopsies

for early diagnosis. Moreover, the consummation of NGS clinical practice will be gradually

improved and established through efforts of different clinical communities, as well as regulatory

bodies.

The modernization of diagnosis is progressively intertwined with emerging technologies and with AI.

NGS-based genetic testing is one of the most promising diagnostic options and, as such, should sit

alongside well-established clinical testing and other innovative diagnostic tools such as wearable

biosensors. AI is starting to realize its potential in augmenting phenome-wide and genome-wide

data profiles to improve clinical utility and diagnostic power. Alongside guidance efforts from the

professional community, the regulatory standardization of NGS-based testing and AI application

have been advocated and initialized by the government agenciesv. We hope our paper will trigger

debate among stakeholders to promote further NGS-based genetic testing, toward a more effective

clinical implementation for millions of rare disease patients.
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