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ABSTRACT: In vitro toxicogenomics (TGx) has the potential to replace or
supplement animal studies. However, TGx studies often suffer from a limited sample
size and cell types. Meanwhile, transcriptomic data have been generated for tens of
thousands of compounds using cancer cell lines mainly for drug efficacy screening.
Here, we asked the question of whether these types of transcriptomic data can be used
to support toxicity assessment. We compared transcriptomic profiles from three cancer
lines (HL60, MCF7, and PC3) from the CMap data set with those using primary
hepatocytes or in vivo repeated dose studies from the Open TG-GATEs database by
using our previously reported pair ranking (PRank) method. We observed an
encouraging similarity between HL60 and human primary hepatocytes (PRank score =
0.70), suggesting the two cellular assays could be potentially interchangeable. When the
analysis was limited to drug-induced liver injury (DILI)-related compounds or genes,
the cancer cell lines exhibited promise in DILI assessment in comparison with
conventional TGx systems (i.e., human primary hepatocytes or rat in vivo repeated dose). Also, some toxicity-related pathways,
such as PPAR signaling pathways and fatty acid-related pathways, were preserved across various assay systems, indicating the
assay transferability is biological process-specific. Furthermore, we established a potential application of transcriptomic profiles
of cancer cell lines for studying immune-related biological processes involving some specific cell types. Moreover, if PRank
analysis was focused on only landmark genes from L1000 or S1500+, the advantage of cancer cell lines over the TGx studies was
limited. In conclusion, repurposing of existing cancer-related transcript profiling data has great potential for toxicity assessment,
particularly in predicting DILI.

■ INTRODUCTION

The use and design of animal models for predicting human
safety are under constant scrutiny.1,2 Consequently, a strategic
shift away from animal use in risk assessment is underway at
the global regulatory agencies. Notably, European Registration,
Evaluation, Authorization, and Restriction of Chemicals
(REACH) and the European Partnership for Alternative
Approaches to Animal Testing (EPAA) have promoted the
application of 3Rs principles (replacement, reduction, and
refinement of animal testing) in regulatory compliance,
communication, and dissemination.3 In the United States,
notable initiatives include Advancing Regulatory Sciences led
by the Food and Drug Administration (FDA)4 and the Tox21
and ToxCast programs initiated by federal agency collabo-
ration.5,6 These programs facilitate the advancement of
applying alternative risk assessment strategies and mecha-
nism-driven methodologies, including in vitro and computa-
tional approaches, for toxicity assessment of compounds that
are important to public health.
Toxicogenomics (TGx), as a maturing discipline, integrates

conventional toxicology with genomics technologies to
advance risk assessment and drug safety evaluation.7,8 TGx,
especially in vitro TGx, has been successfully applied to expand

our molecular understanding of toxicological mechanisms and
serves as a useful tool in predictive toxicology.9−11 For
example, Li et al.12 developed a DNA transcriptomic
biomarker (TGx-DDI) known as TGx-28.65, which could
rapidly distinguish DNA damage-inducing compounds from
nongenotoxicants. This biomarker bridges the gap between in
vitro mutation assays and in vitro chromosomal damage assays
with respect to throughput.
Like conventional toxicology approaches, there are many

variables in the design of TGx experiments such as the choice
of species, cell types of studying, time of exposure, dose/
concentration, and route of administration. With a broad range
of available TGx approaches and methodologies, which is the
optimum approach to use for which toxicological end points?
For example, in the context of TGx, what are the differences
among various preclinical models? Can a 1-day single-dose
experiment replace a 28-day repeated dosing study? Is it
possible to extrapolate from in vitro to in vivo? What is the
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critical difference among various animal-free models? To
address these questions, we developed a pair ranking (PRank)
methodology to analyze different TGx assays from open TG-
GATEs and made several observations.13,14 For example, we
observed that the in vitro assay using primary rat hepatocytes
had a high in vitro to in vivo extrapolation (IVIVE) potential to
a standard 28-day rat in vivo repeated dose model for most
drug-induced liver injury (DILI) end points, supporting the
3Rs principles.14 Additionally, we found a good correlation
between a short-term in vivo single-dose assay and a standard
28-day in vivo repeated dose study provides a possible way to
conserve resources.13 In many cases, the interchangeability
between the TGx assay systems depends on the toxicity
pathway and therapeutic category to be investigated. All of
these conclusions provided useful information for positioning
in vitro TGx approaches in risk assessment. Considering the
limited number of compounds tested and the few cell types
used in the TGx setting, it is still challenging to fully
implement in vitro TGx in risk assessment and to realize its role
in the regulatory application.
In contrast, transcriptomic profiles of tens of thousands of

compounds have been generated using immortalized cell lines
(most are cancer cell lines) and successfully applied in drug
discovery,15 drug repositioning,16 and biomarker discovery.17

Furthermore, some novel in vitro assay platforms such as
L1000 and TempO-seq significantly reduce assay screening
costs and generate data in a high-throughput manner.18,19 If
gene expression patterns from cancer cell lines could
recapitulate the biology noted in standard in vivo TGx assays,
it would tremendously expand the impact of in vitro
transcriptomic profiling in risk assessment and safety
evaluation. Some initial attempts have been made to repurpose
the transcriptomic profiles generated under immortalized cell
cultures to capture the similar biological functions generated
during in vivo TGx assays20 and to develop computational
models.17

To further explore the potential of using the transcriptomic
profiling assays of cancer cell lines in toxicity assessment, we
conducted a comprehensive investigation of the similarity of
gene activities between transcriptomic profiles from cancer
lines in connectivity map (CMap)21 and TGx assays in open
TG-GATEs22 using the PRank method. Moreover, the
extensive comparisons were conducted by limiting the analyses
to the compounds causing DILI and gene sets representing
related predictive toxicogenomics space (PTGS), specific
toxicology-related pathways, and immune system-related
perturbations.

■ MATERIALS AND METHODS
Cancer Cell Line Genomics Data Sets. CMap 02 was employed

as the representative transcriptomic profiling data set of immortalized
cell lines.21 CMap 02 consisted of transcriptomic profiles of 1309
compounds generated in different cancer cell lines with a 6 h
treatment duration. Three microarray platforms, including HG-
U133A, HT-HG-U133A, and HT-HG-U133A_EA, were used,
containing measurements mainly for three cancer cell lines (e.g.,
HL60, MCF, and PC3) with matched control samples. The raw
CELL files can be downloaded from https://portals.broadinstitute.
org/cmap/.
The downloaded CELL files were robust multiarray normalized

(RMA) with the af fy package in R Bioconductor. The custom CDF
files (version 20) from BRIANARRAY (http://brainarray.mbni.med.
umich.edu/Brainarray/Database/CustomCDF/CDF_download.asp)
were used to collapse multiple probe sets into a single gene. Only the

12254 common genes among the three microarray platforms were
retained. Then, fold change values for each compound in different
cancer cell lines were calculated by comparing samples in the
treatment group versus the matched control group with the R limma
package. We excluded treatment instances (compound and cell line
pair) with a single matched control sample. Consequently, a total of
3478 treatment instances were generated, which corresponded to
1072, 1255, and 1149 treatment instances in HL60, MCF7, and PC3
cell lines, respectively.

Toxicogenomics Data Sets. Liver-related treatment data from
the open TG-GATEs (http://toxico.nibiohn.go.jp/english/) were
used in this study,22 which consist of ∼170 compounds tested in four
TGx assays with multiple treatment durations at three different doses
(i.e., low, medium, and high) and a time-matched control. These
assays are two in vitro assays (one applied to primary hepatocytes
from Sprague-Dawley rats and the other used the pooled human
donors) and two rat in vivo assays (i.e., single- and repeated-dosage
treatments). In this study, we used the in vitro data from human
primary hepatocytes (e.g., Human_In_Vitro), which used 24 h
treatment durations and a high concentration. We also used the rat in
vivo repeated dose data with a high dose and longest duration (28
days) that was the standard long-term TGx assay (e.g., Rat_In_Vivo),
to investigate the IVIVE potential. Additional details of the study
design were described elsewhere.13,14,22

Following the same preprocessing procedure used for the CMap
data set, the RMA was used to normalize the raw CELL data of
Human_In_Vitro and Rat_In_Vivo with custom CDF files
hgu133plus2hsensgcdf and rat2302rnensgcdf version 19, respectively.
There are 19363 and 13877 unique genes for each instance [e.g.,
compound/time/dose (or concentration) combination] obtained for
Human_In_Vitro and Rat_In_Vivo, respectively. The 13877 Rattus
norvegicus Entrez gene IDs in Rat_In_Vivo were further mapped onto
Homo sapiens Entrez gene IDs based on NCBI HomoloGene build 68
(ftp://ftp.ncbi.nih.gov/pub/HomoloGene/build68/). Then, fold
change values were calculated in each compound/time/dose or
concentration condition with samples between matched treatment
versus the control groups by the R limma package. Consequently,
there were a total of 156 instances in Human_In_Vitro and 134
instances in Rat_In_Vivo.

We used the 96 overlapping compounds between CMap and the
open TG-GATEs for PRank analysis. The 96 common compounds
were generated on the basis of their shared parent InChIKeys
extracted from https://pubchem.ncbi.nlm.nih.gov/idexchange/
idexchange.cgi. More details of the overlapped compounds are listed
in Table S1.

Drug-Induced Liver Injury Annotation. The 22 drug-induced
liver injury (DILI) end points were annotated and curated in our
previous study.14 We further matched the compounds in each DILI
end point with the 96 common compounds shared by CMap and TG-
GATEs data sets. Consequently, six DILI end points were selected,
including hepatitis, jaundice, jaundice cholestasis, hepatic function
abnormal, Most-DILI concern, and steatosis, with >20 compounds for
further analysis. Furthermore, a list of 1331 genes derived from
transcriptomics data representing a “predictive toxicogenomics space”
(PTGS) was used for assay concordance analysis (see Table S2). The
details of the PTGS gene set generation were described elsewhere.17

To investigate whether the in vitro cell lines are able to distinguish
in vivo hepatotoxicants from nonhepatotoxicants, the SIDER4
database (http://sideeffects.embl.de/)23 that contains information
about marketed medicines and their recorded adverse drug reactions
(ADRs) was employed. The adverse drug reactions in the SIDER4
database are coded by the Medical Dictionary for Regulatory
Activities (MedDRA). First, we mapped 96 overlapped compounds
onto the 1430-drug list in the SIDER4 database and extracted their
related adverse drug reactions [low-level terms (LLTs) in MedDRA].
Then, we mapped these low-level terms (LLTs) onto the system
organ class (SOC) level. We kept the LLTs not belonging to
“hepatobiliary” in the SOCs, which were considered as non-liver-
related ADRs. Similarly, we kept only the ADR with >20 drugs for
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further analysis. As a result, we obtained 15 non-liver-related ADRs
(see Table S3).
Toxicity Pathway-Related Gene Sets. Toxicity pathway-related

gene sets were curated from the Comparative Toxicogenomics
Database (CTD, http://ctdbase.org/), which aims to delineate how
the environmental exposures affect public health.24 The gene−
pathway association data set was downloaded from http://ctdbase.
org/downloads/ (data acquired June 25, 2018). There were a total of
135804 gene−pathway relationships, which corresponded to 11586
human genes and 2363 toxicity-related pathways. We retained 120
toxicity pathways with >200 genes for further analysis.
Immune Cell Gene Signatures. Immune cell gene expression

data in mouse cell lines and tissues were extracted from the
Immunological Genome Project (ImmGen).25 The preprocessing and
normalization of data were described previously.26,27 Specifically, 304
differential state gene expressions (e.g., fold change values) covering
11153 mapped ortholog human Entrez gene ids were generated
between two steady state profiles from 221 unique immunological cell
types. In this study, we ranked gene expression profiles from high to
low based on fold change values for each of the 304 immune-related
states. Then, the top/down 500 genes in each immunological state
were selected as the differentially expressed gene (DEG) signature for
further analysis.
L1000 Landmark Gene Sets. The NIH Library of Integrated

Network-Based Cellular Signatures (LINCS) 1000 project developed
a novel, low-cost, and high-throughput reduced representation
expression profiling approaches based on 978 landmark gene sets.
The rationale behind the L1000 landmark gene set concept was that
the gene expression was highly correlated, and the selected 978
landmark gene sets could recapture the biology and represent the
whole genome-wide expression. The 978-landmark gene set was
downloaded from https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GPL20573 (Table S4).
S1500+ Affymetrix Gene Sets. Like the concept of the L1000

landmark gene set, Tox21 developed an S1500+ “sentinel” gene set
based on the Affymetrix microarray platform (HG-U133plus2) to
represent all known canonical pathways from the Molecular Signature
Database (MSigDB version 4.0) and to infer expression changes for
the remaining transcriptome.28 The S1500+ gene set, including 2753
unique human genes, was employed for further analysis (Table S5).
PRank Methodology. The PRank method was developed and

successfully used to assess the extrapolation potential among TGx
assays.13,14 The PRank method provided a solution to compare any
two assay systems consisting of the following three steps.
(1) Compound Pairwise Similarity. For each assay system, the

compound pairwise similarity between any two compounds was
calculated on the basis of their shared significant genes. First, the
significant genes of each compound were generated by extracting top
N upregulated and downregulated genes from ranked fold change
values. In our previous study, we selected the top 200 up/
downregulated genes in TGx assays, which generated enough
discrimination power to distinguish the transcriptomic profiles. In
this study, we optimized the number of genes for CMap data based on
the stability of ranked similarity lists generated on the basis of a
different number of genes, as proposed in our previous study.14 Then,
Dice’s coefficient between the significant genes of compounds was
calculated by considering the gene regulation directions.
For pairwise similarity measurement using different gene sets, we

kept only mapped genes with fold changes of >1.5 to calculate the
similarity in our previous study.13 It tended to cause the limited
mapped genes for similarity calculation. Therefore, we updated the
similarity measurement by using the following strategies. First, we
mapped the significant genes of compounds onto each gene set
described in the subsections above. Then, we used the Pearson’s
correlation coefficients to calculate the compound pairwise similarity
by using R function cor.
(2) Rank-Order Compound Pairwise Similarity. The compound

pairwise similarities were arranged in decreasing order for each assay
system.

(3) PRank Score Calculation. PRank score was calculated on the
basis of the area under the curve (AUC) value from a receiver
operating characteristic (ROC) curve analysis, which was employed to
measure the preservation of ranked similarity list from one testing
system to the other. The ROC-AUC analysis requires a “ground
truth” with binary representation. Therefore, we needed to translate
the targeted ranked similarity list to positive and negative values (e.g.,
1 or 0). On the basis of the distribution of ranked similarity list, we
selected the Dice’s coefficient of a >99.5% quantile as a cutoff to
identified positive compound pairs. The ROC-AUC analysis was
conducted using R pROC packages.

Pattern Analysis of Gene Expression and Functional
Analysis. For each assay system, we ranked significant genes on
the basis of their expressed frequency across all of the compounds.
Then, we selected the 500 most frequently expressed genes in each
assay system to calculate their percentage of overlapping genes
(POGs). The details of the POG calculation could be found in our
previous study.13 For genes involved in the specific pathway, we
extracted the most frequently expressed genes in the pathway across
all of the compounds and then carried out the comparative analysis
among the different cell-based in vitro assays.

The KEGG pathway analysis was conducted with the 400 most
frequent genes in each assay system by using the Database for
Annotation, Visualization and Integrated Discovery (DAVID)
software.29 The enriched pathways with a Benjamini−Hochberg
adjusted p value of <0.05 were considered as statistically significant
pathways.

Chemical Structure Similarity. The chemical structures
(Canonical SMILES) of common compounds were downloaded
from https://pubchem.ncbi.nlm.nih.gov/pc_fetch/pc_fetch.cgi.
Then, the compound pairwise chemical structure similarity was
calculated on the basis of their functional class fingerprints (FCFPs)
with a radius of FCFP-4 by using Pipeline Pilot 8.0 (Accelrys, Biovia,
and, Dassault Systems) (Table S6).

Code Availability. The scripts and processed data in this study
are available at https://www.synapse.org/#!Synapse:syn20505083/
files/

■ RESULTS

Optimized Number of Genes. We first optimized the
number of genes to represent the compounds for pairwise
similarity calculation. The detailed strategies for determining
the number of genes were described in our previous study.14

Briefly, we incrementally increased the number of genes by 50,
and the correlation between before and after incrementation
for the rank order of drug pairs was calculated. Figure 1 depicts

Figure 1. Stability of ranked similarity list for each assay system. The
data points denote the Spearman’s correlation coefficients for HL60
(red), MCF7 (dark yellow), PC3 (green), Human_In_Vitro (blue),
and Rat_in_Vivo (purple), which were calculated by comparing the
ranked similarity list with different numbers of DEGs with R function
cor.
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the change of Spearman’s correlation coefficients with the
incremental number of significant genes for five different assay
systems (e.g., HL60, MCF7, PC3, Human_In_Vitro, and
Rat_In_Vivo). The Spearman’s correlation coefficients tended
to be stable with more than 250 up- and downregulated genes
in all five assay systems. Furthermore, two TGx assay systems
(e.g., Human_In_Vitro and Rat_In_Vivo) had Spearman’s
correlation coefficients higher than those of cancer cell line-
based assays (e.g., HL60, MCF7, and PC3), suggesting that the
TGx assay systems were less sensitive to the number of genes
used to rank-order compound pairs with respect to the cancer
cell lines. Therefore, the top 250 up- and downregulated genes
of each compound were selected as signatures for the similarity
calculation.
Discriminatory Power of the Assays. We calculated

Dice’s coefficients for each assay where a low coefficient
indicates a stronger ability to differentiate compound pairs
from one another. Figure 2 shows the distribution of
compound pairwise similarity in each assay system. The
average and standard deviation of Dice’s coefficients were
ranked in the following order: Rat_In_Vivo (0.1935 ±
0.0637), Human_In_Vitro (0.1564 ± 0.1212), MCF7
(0.0662 ± 0.0823), PC3 (0.0611 ± 0.0375), and HL60
(0.0493 ± 0.0308). This indicates that the cancer cell line-
based assays demonstrated a stronger ability to differentiate
compound pairs. For the MCF assay, the standard deviation of
Dice’s coefficients is larger than the average value, indicating
the high variability of pairwise similarity. Furthermore, the
ranked assays based on the difference between the maximum
and average of Dice’s coefficients (i.e., a maximum of Dice’s
coefficients − average Dice’s coefficients) were as follows:
Human_In_Vitro (0.5456), MCF7 (0.6437), PC3 (0.3989),
Rat_In_Vivo (0.3684), and HL60 (0.3347). Thus, high-
similarity compound pairs were distinguished more easily
during in vitro assays (except HL60 and PC3) than in the in
vivo assay system.
In the previous study, we investigated the discriminatory

power of TGx assays for use in chemical structure-based read-
across, suggesting that combining two types of information

improves read-across performance.13,14 Here, we further
investigated whether the transcriptomic profiles from cancer
cell lines would add value to the chemical structure-based read-
across approach. We found that the Pearson’s correlation
coefficients of compound pairwise similarity were very low
(e.g., 0.224, 0.189, and 0.210) between chemical spaces and
transcriptomic profiles of three cancer cell lines (HL60, MCF7,
and PC3, respectively). The low correlations between chemical
and transcriptomic space suggested that the improved
chemical-based read-across performance may be warranted
when integrating with transcriptomic information about cancer
cell lines.

Comparison of TGx Study Designs with Cancer Cell
Line-Based Drug Transcriptomic Profiles. Figure 3
summarizes PRank scores of three cancer cell line assays
(HL60, MCF7, and PC3) against two TGx assays (Human_-
In_Vitro and Rat_In_Vivo), along with the scores among

Figure 2. Distribution of compound pairwise similarity in each assay system. Compound pairwise similarity was generated by using Dice’s
coefficients. Dice’s coefficients were calculated on the basis of the top up/down 250 genes ranked by fold changes for any two compounds in each
system.

Figure 3. Concordance between assay systems based on PRank
scores. PRank score was calculated by using ROC-AUC analysis. The
box plot was divided into three parts: the high, moderate, and low
PRank scores colored red, yellow, and blue, respectively.
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three cancer cell lines. The higher concordances among assay
systems were observed among three cancer cell lines assays
(MCF7 vs PC3, HL60 vs PC3, and HL60 vs MCF7) with
PRank scores of 0.84, 0.77, and 0.72, respectively (red in
Figure 3). The moderate concordances (yellow in Figure 3)
were obtained for HL60 versus Human_In_Vitro (PRank
score of 0.72) and PC3 versus Human_In_Vitro (PRank score
of 0.62), indicating that the transcriptomic profiles of cancer
cell lines were somewhat similar to those of human primary
hepatocytes and could be useful for assessing DILI. However,
the concordance in transcriptomic expression between human
cancer cell lines and rat primary hepatocytes was low (blue in
Figure 3)..
To further verify the findings, we carried out a percentage of

overlapping genes (POG) analysis based on the 500 most
frequently expressed genes of compounds in each assay system
(detailed in Materials and Methods). The POG curves of any
two assays were consistent with the PRank findings (Figure
S1). However, the PRank method had better resolution to
distinguish assay systems (e.g., HL60 vs Human_In_Vitro and
PC3 vs Human_In_Vitro) with moderate concordance than
that of the POG method. We further conducted the KEGG
pathway analysis obtained from the 500 most frequently
expressed genes in each assay system. The overlapped
significant pathways are shown in a Venn diagram (Figure
S2). Some pathways such as the PPAR signaling pathway
(KEGG id: hsa03320) and the FoxO signaling pathway
(KEGG id: hsa04068) were significantly enriched (with
adjusted p values of <0.05) by the 500 most frequently
expressed genes from PC3, Human_In_Vitro, and Rat_In_Vi-
vo, suggesting that the IVIVE potential (e.g., immortalized cell
lines and Rat_In_Vivo) could be enhanced in some specific
pathways or biological processes.
Application in Drug-Induced Liver Injury (DILI). DILI

is one of the main reasons for the failure of drug candidates in
the late stages of clinical trials.30 The TGx data in this study are
derived from the liver, which offers an opportunity to assess
the potential of cancer cell lines for DILI prediction by
comparing it with liver-specific TGx studies. We conducted
PRank analysis by limiting compounds causing DILI and using
a list of reported genes related to DILI predictive
toxicogenomics space (PTGS).17

Six DILI end points, including hepatitis, jaundice, jaundice
cholestasis, hepatic function abnormal, Most-DILI concern,
and steatosis, were employed. We observed that, by comparing
Rat_In_Vivo and Human_In_Vitro, three cancer lines
displayed improved PRank scores for six DILI-specific end
points. A total of 72.4% of PRank scores were improved by
10% in comparison to the whole compound list (marked with
an asterisk in Figure 4A). Notably, the concordance for Most-
DILI concern and jaundice cholestasis was improved for all of
the assay comparisons. To further investigate the ability of in
vitro cell lines to distinguish in vivo hepatotoxicants from
nonhepatotoxicants, we compared six DILI-specific end points
to 15 non-liver-related adverse drug reactions (ADRs) (see
Table S3). We found the PRank scores of DILI-specific end
points are larger than most of those of non-liver-related ADRs
between HL60 and Human_In_Vitro, indicating the potential
discriminative power of a specific cancer cell line (i.e., HL60)
to differential DILI from non-DILI compounds (Figure 4B).
PTGS consisted of 1331 genes that were distributed over 14

cytotoxicity-related gene spaces and served as “sentinel” genes
for DILI prediction. The concordance among assay systems

was further assessed by comparing the expression pattern of
1331 PTGS genes with the PRank method (Figure 4A). The
concordances of HL60 versus Rat_In_Vivo (PRank score of
0.645) and MCF7 versus Rat_In_Vivo (PRank score of 0.623)
were marginally increased by 10% in comparison to the whole
gene list studied. However, the PRank scores among HL60,
PC3, and Human_In_Vitro were dramatically decreased,
implying the specific DILI-related biological process perturbed
by different in vitro assay systems.

Toxicity Pathways. We further investigated the con-
cordance between TGx assays and cancer cell line assays when
limiting the genes to specific toxicity-related pathways. The
analysis was focused on 120 toxicity-related pathways obtained

Figure 4. (A) Distribution of PRank scores for DILI-related
annotation among transcriptomic profiling assay systems. The DILI
annotation data consisted of six DILI end points and a list of genes
representing DILI predictive toxicogenomics space (PTGS). The six
DILI end points included hepatitis, jaundice, jaundice cholestasis,
hepatic function abnormal, Most-DILI concern, and steatosis. The
PRank scores for different DILI annotation data were depicted by
using a circle box plot. Meanwhile, PRank scores with all of the
compounds studied are listed in the middle. The bars with asterisks
indicate that their corresponding Prank scores were increased by 10%
in comparison to that of the whole list used. The PRank scores of the
full compound list are listed in the middle of the circle box plot. (B)
PRank scores between HL60 and Human_In_Vitro for DILI end
points and non-liver-related ADR: DILI-related end points (green)
and non-liver-related ADRs (orange).
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from CTD that involved more than 200 genes. In Figure 5, the
stacked areas are arranged in decreasing order based on the

average value of PRank scores of 120 toxicity-related pathways.
The ranked average PRrank scores between assay pairs were
consistent with the whole gene studied. Several top-ranked
toxicity-related pathways based on PRank scores such as fatty
acid, triacylglycerol, and ketone body metabolism and purine
metabolism were consistently enriched across the assay
systems, which further confirmed our findings that assay
transferability was dependent on the biological pathway.13 To
further investigate the similarity and differences of expressed
genes in the two pathways (i.e., fatty acid, triacylglycerol, and
ketone body metabolism and purine metabolism), we carried
out a comparative analysis of the most frequently expressed
genes of drugs between cancer cell lines (i.e., HL60/PC3/
MCF7) and TGx assays (i.e., human primary hepatocytes and
rat liver). It was found that approximately the commonly
expressed genes occupied approximately 17−19.9% and 11.3−
15.6% of all of the expressed genes in the three assay systems
(i.e., cancer lines, Rat_In_Vivo, and Human_In_Vitro) for the
two pathways (see Figure S3 and Table S7). These common
genes may provide useful information about IVIVE potential.
Moreover, the results here are complementary with the KEGG
pathways mentioned above; it was reported that PPARs made
up a unique set of fatty acid-regulated transcription factors
controlling both lipid metabolism and inflammation.31

Immune-Specific Genes. One of the greatest challenges
for an in vitro system in toxicity assessment is to model the
immune-related characteristics of in vivo organisms in an in
vitro environment.32 For that, we limited the analysis of 1000
genes (top up and down 500 differentially expressed genes) for
each of the 304 immune-related states. PRank scores of 304
immune-related states across different assay systems are listed
in Table S8. Figure 6 provides PRank scores for the top five
immune-related cell types among different assay pairs. We
observed that the gene expression pattern of immune-related
cell types tended to be preserved in different transcriptomic
profiling assays. For example, T gamma delta (Tgd) cells are

well-maintained between MCF7 versus Rat_In_Vivo and
HL60 versus Rat_In_Vivo assays, suggesting the potential
application of transcriptomic profiling assays in cancer cell
lines for studying the immune-related biological process
involving Tgd cells. Another example is natural killer (NK)
cells, which are the type of lymphocytes involved in host
rejection of both tumors and virally infected cells. The
transcriptional properties of NK cells were well preserved
across different assay systems. We also found that gene
expression patterns of T8 lymphocytes (T8) were well
preserved within transcriptomic profiles of cancer cell lines
(i.e., HL60, MCF7, and PC3).

Landmark Genes. The concept of landmark genes that
represents the predominant biology at the whole genome scale
offers an opportunity to develop manageable high-throughput
screening assays at a low cost. Two representative landmark
gene sets, L1000 landmark genes with 978 genes19 and
Affymetrix S1500+ with 2735 genes,28 were used to assess the
cancer cell line-based transcriptomic profiling with respect to
TGx assays. Compared with the concordance with all of the
compounds studied, the decreased PRank scores of most assay
comparisons were observed when using S1500+ and L1000
landmark gene sets. Of note, the PRank of MCF versus
Rat_In_Vivo was improved dramatically by 33.6% (from 0.482
to 0.644), demonstrating a divergence of preserved gene
expression patterns in different cancer cell lines (Figure 7).

■ DISCUSSION
Challenges encountered in interpreting animal studies to
predict human toxicity have stimulated many to rethink and
reevaluate alternative strategies for risk assessment. The
strategic shift to the use of in vitro assays assisted by
computational approaches holds promise for reinvigorating

Figure 5. Concordance among transcriptomic profiling assay systems
for gene sets related to different toxicity-related pathways. The
stacked plots of PRank scores for different gene sets in the assay
systems. A total of 120 toxicity-related pathways with more than 200
genes involved from the Comparative Toxicogenomics Database
(CTD, http://ctdbase.org/) were employed. The average and
standard deviation values of PRank scores of 120 toxicity-related
pathways in each assay comparison are illustrated.

Figure 6. Distribution of top-ranked PRank scores for differentially
expressed genes (DEGs) of different immune-related states among
transcriptomic profiling assay systems. A total of 304 immune system-
related states were assessed with the PRank method among the assay
systems. The top five ranked PRank scores related to immune cells are
plotted in circle bars. The full ranking list of immune-related states
based on PRank score can be found in Table S10.
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this risk assessment paradigm. Transcriptomic profiling of
immortalized cell lines has led to the accumulation of vast
numbers of data points en route to improving our under-
standing of cancer pathogenesis and oncology drug develop-
ment.33,34 However, whether these data could be applied to
understanding toxicology or to the assessment of toxicological
hazard or risk is still unclear.
To address these unanswered questions, we conducted a

comprehensive analysis of the concordance between cancer cell
line-based transcriptomic profiling assays and TGx assay
systems. Some encouraging results were obtained, which
could serve as a foundation for the selection of immortalized
cell lines to further develop predictive models in toxicology.
Overall, excellent PRank scores were captured within tran-
scriptomic profiling assays of cancer cell lines. The correlation
between in vitro assay systems suggested in vitro TGx and
specific cancer cell line-based transcriptomic profiling assays
(i.e., HL60) could be interchangeable. Primary human
hepatocyte cultures have been considered as the gold standard
for the creation of human-relevant liver cell culture models.
Moreover, they present significant and predictive results in
pharmacological and toxicological in vitro research due to their
unstable differentiation.35 Hepatocytes are differentiated cells
expressing many hepatic functions and retain the expression of
both Phase I and II enzymes for a limited time in culture.
Thus, tests on primary hepatocyte cultures are often capable of
elucidating mechanisms of DILI. For example, many drugs
inducing severe DILI have been shown to cause an elevated
ROS/ATP ratio in primary human hepatocyte cultures,
indicating oxidative stress.36

However, the extrapolation from in vitro to in vivo was poor,
indicating that species differences contributed to the large
divergence between assay systems. Furthermore, we noticed
that the correlation between the human primary hepatocytes
and MCF cells was also suboptimal, suggesting that something
other than species may be driving the different responses
between cancer cell lines and normal human hepatocytes and
rat tissue. Therefore, a closer investigation of the TGx assay
and different cancer lines beyond the data employed in this
study was strongly recommended.
Moreover, the gene expression of compounds in different

assay systems is multifactorial. Due to limitations of the data,

some important variables and factors that potentially impact
the transcriptomic response in different cell cultures are not
included in this study. For example, factors such as the passage
number, de-differentiation of cancer cell lines, and the time of
treatment after plating cells are not taken into consideration.
Furthermore, the interior difference among the cancer cell lines
(i.e., HL60 cells are suspended hematological cells, whereas
MCF-7 cells are adherent monolayer-transformed mammary
epithelial cells that lose estrogen receptor signaling with an
increasing passage number) and different culture conditions
(i.e., medium/serum) is strongly recommended to further
verify and correct the findings based on the limited data in this
study.
DILI is a complex clinical end point and poses a challenge to

the pharmaceutical industry and to regulatory agencies due to
inadequate methods of prediction.37−39 Many DILI prediction
models have been developed on the basis of information such
as chemical structures,40−42 toxicogenomics profiles,43 and
high-throughput screening (HTS) assays.44 These models have
improved DILI management to some extent. However, many
of these DILI prediction models suffer from insufficient data
points, and their power is too limited for clinical application.
The initial findings of our analysis may provide useful
information and pave the way for further investigation of the
potential to reuse transcriptomic profiling assays of cancer cell
lines for the prediction of DILI.
The transferability among assays improves when the focus is

on specific pathways related to bioenergetics. The phenomen-
on of specific pathways related to bioenergetics perturbation
was preserved across the transcriptomic profiling assay systems.
In our previous study, we found that the same compound
could perturb fatty acid-related pathways (e.g., fatty acid,
triacylglycerol, and ketone body metabolism and purine
metabolism) and PPAR signaling pathways across TGx assay
systems.13,14 Here, we further confirmed the preservation of
these pathways in the transcriptomic profiling assay of cancer
cell lines. The finding also demonstrated the possibility of
repurposing cancer cell line transcriptomic profiles for risk
assessment.
One of the criticisms of in vitro assays is their poor

recapitulation ability of immune-related characteristics in
organisms, leading to limited predictive power for human
toxicity.45 Arguably, a key aspect of the toxicological response
in vivo is adaptation and recovery, which to a large extent
involves immune-related biological processes. The representa-
tion of immune-related properties differs in different cell types.
For example, HL-60 cells are neutrophil-like leukemia cells,
which potentially should be more accurate at picking up
immune-related mechanisms than MCF7 or PC3 cells.
However, further investigation of the correlation between the
gene activity represented in the cancer cells and immune cells
is still an open question. Therefore, a comprehensive
assessment of the preservation of immune-related features in
different assay systems is urgently needed to assess the
suitability for these assays in risk assessment
Several scientific communities and government-led initia-

tives have utilized the concept of landmark genes to develop
affordable high-throughput transcriptomic (HTT) methods,
allowing for the screening of larger numbers of untested
samples.19,28 Due to the heterogeneity of the cell types used,
one critical question is how to select the “fit-for-purpose” cell
types for in vitro assay development. An analysis was conducted
and suggested the possibility of repurposing cancer cell lines

Figure 7. Concordance among transcriptomic profiling assay systems
for landmark gene sets. Two landmark gene sets, including 978 L1000
landmark genes and 2753 S1500+ landmark genes, were used. PRank
scores are plotted as bars and colored blue, orange, and green for the
L1000, S1500+, and whole gene list, respectively.
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based on transcriptomic profiling assays for DILI prediction
with an improved prediction performance. We observed low
PRank scores (<0.6) among the assay systems when limiting
the comparison with L1000 and S1500+ landmark genes,
which projected the complexity of gene expression patterns
regulated in a coordinated fashion under different assay
systems. The extrapolation power of these landmark gene
sets in various in vitro assay systems offers an opportunity to
implement landmark gene-based HTS assays for risk assess-
ment and requires further investigation.
The PRank method provided an innovative strategy for

assessing transferability between transcriptomic profiling
assays. The PRank method hypothesizes that the ranking of
transcriptomic profile similarity between compounds could be
preserved if the two assay systems are interchangeable. The
PRank aims to provide a framework for assay comparison. Any
advanced methods could be injected into the frame for better
performance. For example, we employed Dice’s coefficients for
compound similarity calculation. Other measurement strat-
egies, including the Jaccard index, K-L divergence based on the
distribution of topics derived from the Latent Dirichlet
allocation (LDA) models, are the alternative options for
pairwise similarity calculation. Furthermore, the PRank score
was calculated on the basis of the AUC value from ROC-AUC
analysis. The binary cutoff should be determined and is
currently based on an arbitrary determination. Some non-
parametric vector ranking comparison strategies were
encouraged to provide a more objective measurement. Along
with our two previous studies, we comprehensively assessed
some influential factors of the PRank method such as
preprocessing procedures (e.g., FAMERS, MAS5, and RMA),
the optimized number of DEG, and multiple time/dose
combinations. It was demonstrated that the PRank method
could provide a reliable solution for transcriptomic assay
comparison to guide assay selection in risk assessment and
drug safety evaluation.
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