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Drug-induced liver injury (DILI) is of significant concern to drug development and regulatory review

because of the limited success with existing preclinical models. For developing alternative methods, a large

drug list is needed with known DILI severity and toxicity. We augmented the DILIrank data set [annotated

usingUSFoodandDrugAdministration(FDA) druglabeling)]withfourliteraturedatasets (N>350 drugs)to

generate the largest drug list with DILI classification, called DILIst (DILI severity and toxicity). DILIst

comprises 1279 drugs, of which 768 were DILI positives (increase of 65% from DILIrank), whereas 511 were

DILI negatives (increase of 65%). The investigation of DILI positive–negative distribution across various

therapeutic categories revealed the most and least frequent DILI categories. Thus, we consider DILIst to be

an invaluable resource for the community to improve DILI research.
Introduction
The current paradigm of drug development faces major challenges

in cost, time, and failure. On average, it takes �10 years at a cost of

�US$2.6 billion to bring a drug to market; recent years have seen a

decline in the Phase I to launch rate from 8.3% to 4.7% [1–3]. Many

failures during early clinical trials are attributed to safety concerns

[3,4]. Specifically, DILI has been identified as a significant cause of

drugs being either withdrawn from the market or terminated,

particularly during the late stages of development [5–7]. DILI-

related safety concerns and the increasing cost of drug develop-

ment are issues that have persisted for over a decade [8,9].

Several studies have demonstrated a low concordance between

animal models used for testing hepatotoxicity and human out-

comes; this might be one reason for the prevalence of hepatic

injury noted during late-stage drug development [10]. To add more

complexity to addressing DILI-related safety concerns, it is well

established that alternative diagnosis are frequent in DILI studies

and result in the confounding results. These observations have

driven significant efforts to evaluate alternative methods to
Corresponding author: Tong, W. (Weida.tong@fda.hhs.gov)

1359-6446/Crown Copyright ã 2019 Published by Elsevier Ltd. This is an open access article under the CC 

https://doi.org/10.1016/j.drudis.2019.09.022 
identify DILI at an earlier stage by emerging methodologies, such

as high-throughput screening, high-content assays, and toxicoge-

nomics, along with advanced computational modeling techniques

[11]. This move towards animal-free and high-throughput meth-

odologies marks a paradigm shift for 21st-century risk assessment

[12,13]. Some of these approaches have already been evaluated for

regulatory decision-making [14]. For example, the European

Union (EU) has made significant progress in REACH/3Rs [15],

whereas Tox21 [16] and ToxCast [17], both initiated by US

Government agencies, have been underway for several years.

These initiatives have focused specific attention on efforts to

evaluate high-throughput approaches, especially those based on

in vitro data [18–23], in silico approaches [24–27], and toxicoge-

nomics for risk assessment [7,23,28]. These methodologies often

use various statistical approaches to develop predictive models, for

which a large database of compounds with known toxic outcome

is essential.

Overall, the probability of success of high-throughput alterna-

tive methods in DILI research would be enhanced by an extensive

drug list, systematically classified for DILI potential in humans.

Thus, we developed such an approach to classify DILI potential of
BY license (http://creativecommons.org/licenses/by/4.0/).
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drugs using FDA-approved drug labeling documents [29]. We first

reported a benchmark dataset of 287 drugs [29] and then expanded

the list to generate a larger DILI drug list (DILIrank) [30], which

comprised 775 drugs classified into three categories of DILI con-

cern (most-, less-, and no-DILI concern), plus 254 drugs for which

the DILI potential was undetermined (lack of DILI-related causal

evidence). Both data sets have been extensively used to develop in

silico predictive models [24,31], in vitro biomarkers [32,33], and in

other applications [34,35]. Of note, the current study is based on a

retrospective analysis.

DILIrank utilized only FDA drug-labeling information, poten-

tially missing three rich sources of data. First, drugs approved by

other countries, such as those in Europe and Japan, might not be

included in the FDA labeling. Second, many drugs withdrawn

from the world market are not necessarily available in the current

labeling system, particularly if they were removed from the

market a long time ago. Finally, the labeling documents might

not provide sufficient information to identify some drugs as

hepatotoxic. For example, there are 254 drugs in DILIrank that

were classified as ‘ambiguous’. However, some of these drugs have

been studied extensively and reported in the literature. For

example, four large DILI data sets (N> = 350) were described

based on different approaches, including a clinical evidence-

based approach (LiverTox data set) [36,37], a literature-based

approach (Greene data set) [38], a case registry-based approach

(Suzuki data set) [39], and an approach based on curating data

from the FDA Adverse Event Reporting System (FAERS) (Zhu data

set) [40]. These large literature data sets offer an opportunity to
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FIGURE 1

Generation of Drug-Induced Liver Injury Severity and Toxicity (DILIst): four literat
DILIst. First, the overlap between DILIrank and each of the four data sets was asse
data set, the concordance in each respective DILI severity category (e.g., DILI positiv
online). Where there was >75% concordance for a severity category, the additional
DILIst. For subsequent augmentation, the updated list was used for concordance 

Suzuki and Zhu data sets contributed only DILI-positive drugs. The detail inform
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generate a larger DILI reference list that goes beyond DILIrank. To

capitalize on this opportunity, we developed an integrative

approach to merge the four literature data sets (LiverTox, Greene,

Suzuki, and Zhu) into DILIrank to generate DILIst, a data set with

nearly twice the number of drugs and a broader range of thera-

peutic categories. This augmented data set is the largest database

of drugs (N = 1279) with positive or negative DILI classification

currently available.

Development of DILIst via incremental augmentation
We augmented DILIrank with drugs from other large data sets

where human DILI data were readily available. To identify candi-

date data sets suitable for augmentation, a literature search was

performed to select only those with >350 drugs with a human DILI

classification. Four data sets were selected: LiverTox [36,37], Suzuki

[39], Greene [38], and Zhu data sets [40] (Fig. 1). We calculated the

percentage overlap of these four data sets with DILIrank (LiverTox

64%; Suzuki 65%; Greene 41%; and Zhu 36%) and started the

augmentation with the highest overlapping data set that had both

DILI positives and DILI negatives (LiverTox). The augmentation

process was incremental; one data set was considered at a time for

the concordance analysis. Extreme caution was used when includ-

ing the LiverTox, Suzuki, Greene, and Zhu data into the new

classification scheme, as specified below.

Given the fact that each data set used a different source of

information for DILI classification, we conducted a concordance

analysis between each of the four literature data sets and DILIrank

for both DILI positive and negative categories, respectively. If the
Drug Discovery Today 
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concordance was >75% for a specific category (i.e., DILI positive or

negative), the drugs from the literature data set that were not

present in DILIrank were incorporated. This concordance analysis

for augmenting the drugs from the literature data set into DILIst

improved the overall accuracy. Of note, DILIrank categorized

drugs into three categories (No-, Less-, and Most-DILI-concerns)

[1]. For generating DILIst, the drugs categorized as Less- and Most-

DILI-concerns were considered DILI positives and drugs

categorized as No-DILI-concern was considered as DILI negative.

For the description of the augmentation process and statistics,

please see Supplementary Material in the supplemental

information online. The complete drugs list generated for DILIst

including classification information is provided in Table S2 in the

supplemental information on online.

DILI landscape in the context of therapeutic and
chemical classes
The creation of the largest list of drugs with a well-defined DILI

classification offers an opportunity to consider DILI profiles

across various therapeutic and chemical classes. Maintained by the
DILI Positive

DILI Negative

(a) 

(c)

FIGURE 2

Anatomical, Therapeutic, Chemical (ATC) distribution and comparison in Drug-Indu
of DILI-negative drugs (orange bars) and DILI-positive drugs (blue bars) in DILIst v
pharmacological; and (c) chemical], showing the number of positive or negative d
lists (a), only the most frequent subgroups are depicted in (b) (pharmacological s
percentages depict the increase in the number of drugs in DILIst versus DILIrank. C
are underlined. * depicts categories and/or subgroups where there was a statistical
with DILIrank (also highlighted in green text) calculated using Fisher’s exact test
WHO, the Anatomical, Therapeutic, Chemical (ATC) Classification

System is an internationally accepted classification system for drugs

[41] and was used for this purpose. In the ATC Classification System,

drugs are divided into five levels [42]: the highest level is the main

anatomical group, the second level is the therapeutic subgroup, the

third level is the pharmacological subgroup, the fourth specifies

chemical subgroup, and the fifth level denotes chemical substance

[43,44]. We examined trends and patterns in the DILI landscape at

multiple levels of ATC classification, with a focus on anatomical,

pharmacological, and chemical features. By comparing DILIst to

DILIrank, an enrichment analysis was conducted to identify the

‘enhanced’ categories (where the number of drugs was significantly

increased from DILIrank to DILIst) at the various levels of ATC

classification. Enrichment analysis focused not only on the increase

in the number in a category at all levels of ATC, but also on the

identification ofcategories where the DILIpositive/negative ratio was

altered.

Upon analyzing the anatomical group (the top level of ATC), as

represented in Fig. 2a, both DILIrank and DILIst covered all 14

anatomical categories with no new categories introduced into
DILI Positive

DILI Negative

DILI Positive

DILI Negative

(b)
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ced Liver Injury (DILI)rank and DILI Severity and Toxicity (DILIst). A comparison
ersus DILIrank depicted by three levels of ATC hierarchy [(a) anatomical; (b)
rugs. Although all the ATC anatomical categories are presented in both DILI
ubgroups with �20 drugs) and (c) (chemical subgroup with �9 drugs). The
ategories and/or subgroups enriched in actual numbers of drugs by �100%
ly significantly different positive/negative ratio (P < 0.05) in DILIst compared

 for each category.
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DILIst (Table 1, column 4). Overall the ATC anatomical categories

that were abundant in DILIrank remained abundant in DILIst, but

with an increased number of drugs, suggesting concordance be-

tween the two lists in the context of overall coverage across various

organ systems. Drugs related to the nervous system, anti-infective

for systemic use, cardiovascular system, antineoplastic and immu-

nomodulating agents, and alimentary tract and metabolism were

predominant in DILIst. Notably, these anatomical categories con-

tained drugs well known for their association with hepatotoxicity,

as noted in multiple publications [45,50]. The nervous system

anatomical subgroup contributed the highest number of drugs

to DILIst (190; 14.5% of the total drugs) overall and the highest

number of DILI-positive drugs in the group (112) (Fig. 2a and Table

1). One notable change was that, if we considered only the DILI-

positive drugs, antineoplastic and immunomodulating agents (93)

were elevated in the rankings (Table 1). Overall, the drugs present

in the top five ATC anatomical categories contributed �55% of the

drugs in DILIst. The number of drugs in all categories was increased
TABLE 1

DILIst in the context of the ATC Classification Systema

ATC category DILIst 

Top 5 categories Top 5 DILI-positive

Anatomical (total DILIst: 14
categories; newly added: 0
categories)

Nervous system (190) Nervous system (11

Anti-infectives for
systemic use (140)

Anti-infectives for s
(94/140)

Cardiovascular system
(139)

Antineoplastic and
immunomodulating
agents (93/133)

Antineoplastic and
immunomodulating
agents (133)

Cardiovascular syste

Alimentary tract and
metabolism (107)

Alimentary tract an
metabolism (60/107

Other antineoplastic
agents (43)

Other antineoplastic
(31/43)

Pharmacological (total
DILIst: 172 categories; newly
added: 16 categories)

Direct-acting antivirals
(35)

Antidepressants (25

Other beta-lactam
antibacterials (31)

Antiinflammatory an
antirheumatic produ

Antidepressants (29) Direct-acting antivir

Antihistamines for
systemic use (28)

Other beta-lactam a
(20/31)

Benzodiazepine
derivatives (24)

Benzodiazepine der
(16/24)

Chemical (total DILIst: 381
categories; newly added: 66
categories)

Antibiotics (17) Other antineoplastic
agents (12/17)

Other antineoplastic
agents (17)

Protein kinase inhib

Protein kinase inhibitors
(13)

Fluoroquinolones (1

Dihydropyridine
derivatives (12)

Other antidepressan

a The DILIst drugs were organized by ATC hierarchical categories (anatomical, pharmacologica
subgroups and the newly added subgroups in DILIst versus DILIrank. Colum 2 highlights the t
subgroups (column 3) and the top 5 DILI-negative subgroups (column 4).
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in DILIst compared with DILIrank (Fig. 2a). Five of the high-

frequency anatomical subgroups had a statistically different ratio

of DILI-positive to DILI-negative drugs in DILIst compared with

DILIrank (Fig. 2a; Table 1, Column 5); in two cases, this was

because of the addition of only DILI-positive drugs to DILIst

and in three cases this was because of the addition of both

DILI-positive and negative drugs but in differing proportions.

Upon analyzing the pharmacological subgroups represented in

DILIst (the first subgroup in ATC), there was a total of 172, an

addition of 16 new subgroups (Table 1, Column 4). The top five

most-frequent pharmacological subgroups collectively contribut-

ed a total of 10% of the drugs to DILIst; these top five drugs have

already been associated with DILI causality [45–50]. In comparing

DILIrank with DILIst, there were three subgroups where there was

a �100% increase in the number of drugs in the category (hypno-

tics and sedatives; beta-lactam antibacterials; and antipsychotics)

(Fig. 2b). Three of the high-frequency pharmacological subgroups

(direct acting antivirals, other beta lactam antibacterials, and
DILIst versus DILIrank

 categories Top 5 DILI-negative
categories

Statistically significant
categories (P <0.05)

2/190) Nervous system (78/190) Anti-infectives for systemic
use

ystemic use Cardiovascular system
(58/139)

Cardiovascular system

Alimentary tract and
metabolism (47/107)

Blood and blood-forming
organs

m (81/139) Anti-infectives for systemic
use (46/140)

Antiparasitic products,
insecticides, and repellents

d
)

Antineoplastic and
immunomodulating agents
(40/133)

Systemic hormonal
preparations

 agents Direct-acting antivirals
(15/35)

Direct-acting antivirals

/29) Antihistamines for systemic
use (14/28)

Other beta-lactam
antibacterials

d
cts (25/28)

Hypnotics and
sedatives (13/21)

Antidepressants

als (21/35) Other antineoplastic agents
(12/43)

Lipid-modifying agents,
plain

ntibacterials Other beta-lactam
antibacterials (11/31)

Drugs for treatment of TB

ivatives Enzymes (9/10) Third-generation
cephalosporins

Benzodiazepine derivatives
(8/24)

Nucleoside and nucleotide
reverse transcriptase
inhibitors

itors (11/17) Antibiotics (8/17) Angiotensin II antagonists,
plain

1/12) Drugs for urinary frequency
and incontinence (7/7)

ts (10/10) Selective serotonin (5HT1)
agonists (7/7)

l, and chemical; column 1) with information about the total number of categories and/or
op 5 subgroups containing the most drugs (column 2), along with the top 5 DILI-positive
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antidepressants) had a statistically different ratio of DILI-positive

to DILI-negative drugs in DILIst compared with DILIrank (Fig. 2b;

Table 1, Column 5) driven by the addition of 14, 11, and three new

DILI-negative drugs to the three categories, respectively. This is

valuable given that there were few DILI-negative drugs in these

categories in DILIrank. This change gives us a revised perspective

on these pharmacological categories. Two further categories (lipid-

modifying enzymes and drugs for TB) also had a statistically

different ratio of DILI-positive to DILI-negative drugs, but are

not shown in Fig. 2b because they were below the cut-off

(>20 drugs) for inclusion.

Upon analyzing the chemical subgroups (the fourth subgroup

in ATC), there were 66 additional subgroups in DILIst compared

with DILIrank (Table 1, Columns 1–4). The most frequently oc-

curring chemical subgroups in DILIst were the benzodiazepine

derivatives, antibiotics, other antineoplastic agents, protein kinase

inhibitors, and dihydropyridine derivatives (Table 1, Column 2).

There were four chemical categories (benzodiazepine derivatives,

dihydropyridine derivatives, third-generation cephalosporins,

and other antihistamines for systemic use) where there was a

�100% increase in the number of drugs in the category

(Fig. 2c). These observations are consistent with the prior DILI

causality knowledge from multiple sources [51,52]. Three of the

high-frequency chemical subgroups (third-generation cephalos-

porins, nucleoside and nucleotide reverse transcriptase inhibitors,

and dihydropyridine derivatives) had a statistically different ratio

of DILI-positive to DILI-negative drugs in DILIst compared with
(a) (b)

FIGURE 3

‘Hot-spot’ analysis of over-represented subgroups of Anatomical, Therapeutic, Ch
anatomical categories. The number in each cell is the total number of DILI-positi
‘intersection’ and its color indicates the percentage of DILI-positive drugs in tha
DILIrank. There were several notable changes between the drug

profiles in DILIrank and DILIst. Six DILI-negative third-generation

cephalosporins were added against a background of zero in DILIr-

ank. Also, there were one or two DILI-negative drugs added to

three chemical categories (protease inhibitors, ACE inhibitors, and

fluoroquinolones) where there were no DILI-negative drugs listed

previously in DILIrank. The antibiotics chemical category con-

tained primarily DILI-positive drugs in DILIrank, but this profile

was altered in DILIst. The additional perspective offered by DILIst

provides an opportunity for future DILI predictive model building.

DILI-related hotspot identification
DILIst offers great potential for data-driven safety predictions,

which are invaluable in developing new approaches based on

high-throughput technologies and in silico methodologies. In

support of this, we analyzed the distribution of DILI-positive drugs

among the anatomical categories to determine hot spots of risk

within pharmacological (Fig. 3a) and chemical (Fig. 3b) subgroups.

‘Hot-spot’ analysis aims to understand and identify the over-

represented subgroups of ATC pharmacological and chemical

subgroups over ATC anatomical categories. Hot spots for DILI risk

(75–100% DILI positive) in drugs targeting the nervous system

included antidepressants (25/29; 86% DILI positive) and antiepi-

leptics (16/20; 80% DILI positive) (Fig. 3a). Antidepressants drugs

are one of the most commonly prescribed drugs and are well

known for causing liver injury, contributing to 2–5% of clinical

DILI-related cases. Other hot spots for DILI risk (75–100% DILI
Drug Discovery Today 

emical (ATC) pharmacological (a) and chemical (b) subgroups by ATC
ve drugs (nominator) over the total number of drugs (denominator) in that
t ‘intersection’.
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positive) were in anti-inflammatory and antirheumatic drugs tar-

geting the musculoskeletal system, where 25/27 (>90%) were DILI

positive, and in blood glucose-lowering drugs, where 18/24 (75%)

were DILI positive (Fig. 3a).

Looking at the chemical subgroups (Fig. 3b), there were several

notable findings. Within the antineoplastic agents, kinase inhibi-

tors and the interferons were in the high category for DILI, with all

nine interferons being DILI positive. In the cardiovascular system,

ACE inhibitors showed a high risk of DILI (9/11; 81%). The

antidepressant chemical class ‘monoamine oxidase inhibitors’

was 66% DILI positive (6/9), whereas ‘other antidepressants’

exhibited a 100% incidence of DILI positivity (10/10). Also notable

in the analysis of DILI-positive drugs among the chemical (Fig. 3b)

subgroups was that enzymes carried a very low DILI risk.

In analyzing the data in DILIst for patterns that could be useful

in understanding DILI prediction, we noted five pharmacological

groups (antidepressants, antiepileptics, anti-inflammatory and

antirheumatic products, and blood glucose-lowering drugs) that

were >75% DILI positive (Fig. 3a,4). The pharmacological sub-

groups antidepressants and antiepileptics had multiple chemical

subgroups with high numbers of DILI-positive drugs. As
Nervous s
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products, non-steroids

N
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FIGURE 4

Analysis of the drug-induced liver injury (DILI) potential of different drug classes
percentage in Figure 3a in the main text) were selected as an upper threshold to ass
the most DILI concern pharmacological categories. Four pharmacological subgrou
products non-steroids, and alimentary track metabolism) met the criteria, which 

system, and alimentary track metabolism). The histograms depict the frequency
subgroup. The actual number of drugs in that category is shown in white.
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highlighted earlier, this could reflect the observation that the

nervous system anatomical subgroup contributed the highest

number of DILI drugs to DILIst (190; 14.5% of the total drugs)

overall and the highest number of DILI positive drugs (Fig. 2a and

Table 1). The other two anatomical groups in Fig. 4 (musculo-

skeletal and alimentary tract metabolism) are present because of

only one pharmacological subgroup each; anti-inflammatory and

antirheumatic products in the case of the musculoskeletal sys-

tem, and blood glucose-lowering drugs in the case of alimentary

tract metabolism. Many of the chemical subgroups in these two

anatomical groups were 100% DILI positive.

Discussion
In this study, we augmented DILIrank by incorporating DILI

information from multiple data sources to give a comprehensive

DILI database containing 1279 drugs with 381 chemical sub-

groups. This offers the opportunity to analyze the largest number

of drugs classified by their human hepatotoxicity profile. Thus,

DILIst represents a valuable resource to support the current

paradigm shift towards alternative predictive toxicological meth-

ods based on high-throughput technologies by providing a large
ystem
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B
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reference drug list that is well classified for human DILI informa-

tion and compound information.

DILI is a multifactorial endpoint with multiple schemes and

approaches for its classification. The assignment of DILI risk to

drugs can be challenging especially when DILI occurs with a low

incidence but with a wide range of severity and with multiple

injury patterns. In addition, the causality of liver injury can be

hard to ascertain for various reasons, such as co-medication,

alcohol consumption, pre-existing liver disease, or other con-

founding factors. DILIst addresses this by creating a single database

that incorporates different data sources, such as the number of case

reports [36,37,39], the FDA approved-drug labeling [29,30], FAERS

[40], drug registry [39], and literature evidence [38], to provide

consolidated and comprehensive DILI information.

Using DILIst, we were able to identify DILI-related patterns in

chemical subgroups that were not apparent in DILIrank. For

example, the fluoroquinolones are primarily DILI positive

(>75%) and span two anatomical subgroups (anti-infective for

systemic use and sensory organs). Other prominent DILI positive

subgroups (>75% DILI positive) are ACE inhibitors, protease inhi-

bitors, and other antidepressants. It is challenging not only to

determine DILI-positive drugs, but also to be definitive about drugs

being DILI negative, especially because DILI is idiosyncratic.

Through DILIst, we were able to identify many additional DILI-

negative drugs in all the categories, with which, we were able to

identify DILI-negative spots. For example, the enzyme chemical

subgroups were comparatively safer, with a <25% DILI-positive

rate. Another chemical subgroup where DILI-negative drugs pre-

dominate was the bisphosphonates.

It is important to point out the potential limitations in this study.

First, we adopted a binary classification (positive versus negative),

which is useful for predictive modeling and assessing high-through-

put technologies in drug development, but is less realistic for clinical

practice because we are all aware that a ‘black-or-white’ DILI risk is

oversimplistic. Second, the augmentation generated an opportunity

to work with a large data set, which is crucial in the era of bigdata and

artificial intelligence, but also encounters a challenge of reducing

the noise from diverse data sets because they have different classifi-

cation schema. To mitigate the risk of bringing noise, we imple-

mented a statistical approach in the augmentation process.
Specifically, we started with DILIrank data and applied a statistical

criterion to augment DILIst with drugs from other sources. This

statistical criterion ensured that the incorporated data were consis-

tent with DILIrank including causality. In other words, we did not

blindly merge all the drugs from all the literature data sets to

DILIrank. We only took those meeting the statistical criteria for

inclusion. For example, exclusion/inclusion criteria for LiverTox is

illustrated in Figure S1a in the supplemental information online.

Third, using literature data sets, particularly for some of these data

sets that were published some years back, they could introduce both

false positives and false negatives, and the data collected at the time

ofpublication mightnotnowbeuptodate.Thus,DILIst isnotmeant

to be the final classification and it will be updated periodically. In

fact, the DILI classification of some of the drugs was updated in

DILIst based on new evidence.

Concluding remarks
DILIst is relevant to many interested parties, including regulators,

researchers, and others involved in drug discovery and develop-

ment. DILIst will be an invaluable resource for the community to

improve DILI research in the areas of elucidation of mechanisms,

predictive model development, and biomarker identification, and

provides additional opportunities to exploit the potential of

emerging technologies. This enriched information has the poten-

tial to support the next generation of toxicological developments

from drug development and regulatory decision making to epide-

miologically associated applications. Using this comprehensive

DILIst, researchers and regulators will be empowered to exploit

the new technologies and new data streams to provide new

insights.

Disclaimer
The views presented in this paper do not necessarily reflect current

or future opinion or policy of the U.S. Food and Drug Administra-

tion. Any mention of commercial products is for clarification and

not intended as endorsement.

Appendix A. Supplementary data
‘Supplementary material related to this article can be found, in the

online version, at doi:https://doi.org/10.1016/j.drudis.2019.09.022.
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