Drug Discovery and Development: Toxicological Challenges and Opportunities Professor Ruth A Roberts, PhD ATS, FBTS, ERT, FRSB, FRCPath Director and Cofounder, ApconiX Chair of Drug Discovery, Birmingham, UK <u>ruth.roberts@apconix.com</u> <u>r.roberts.4@bham.ac.uk</u>

bioneu awards 2017*

Start Up of the Year Award WINNER

Drug discovery and development: challenges and opportunities

- Outline of drug discovery and development
- Challenges
 - Attrition
 - Concordance
 - 3Rs

Opportunities

- Derisking target and chemistry
- Bespoke design of the nonclinical programme
- 3Rs
- Role of new technologies
- Future Perspectives

CD: candidate drug; LG: lead generation; LO: lead optimisation; TS: target selection; GLP: good laboratory practice; MOA: mode of action

Abbs: CD: candidate drug; CNS: Central Nervous System; DRF: dose range finding; EFD: Embryo Fetal Development; FTIM: first time in man; GLP: good laboratory practice; LG/LO: lead generation/lead optimisation; ICH: International Council for Harmonisation; MOLY: Mouse Lymphoma; MTD: maximum tolerated dose; P&P: peri and post natal; SAR: Structure Activity Relationship; TS: target selection

CD: candidate drug; LG: lead generation; LO: lead optimisation; TS: target selection; GLP: good laboratory practice; MOA: mode of action

Nonclinical toxicology: major reason for failure across multiple big pharma

An analysis of the attrition of drug candidates from four major pharmaceutical companies Waring et al., Nature Reviews Drug Discovery, 14, 2015

Investigating failure

48 AstraZeneca drugs failed during GLP tox alone – reasons?

Roberts *et al* (2014). Reducing attrition in drug development: smart loading preclinical safety assessment. <u>Drug Discov Today.</u> 2014 Mar;19(3):341-347.

Liver Is the Most Frequent Target Organ in Rodent and Non-Rodent FTIM Studies (all projects)

Target Organ	Non-rodent	Rodent	
1	Liver	Liver	
2	Thymus	Adrenal	
3	GI	Spleen Kidneys Bone Marrow	
4	Testes		
5	Lymph nodes		
Th	This toxicology profile informs:		

Horner et al (2013) *Regulatory Toxicology and Pharmacology*, 65, 334-343.

 NUMBER Values
 Contents the Workshow of the Solvey Direct Name

 NUMBER
 Contents the Workshow of the Solvey Direct Name

 NUMBER
 Regulatory Toxicology and Pharmacology

 NUMBER
 Journal homespage: www.stexier.com/iterativyrigh

This toxicology profile informs: Starting dose/escalation Patient exclusion Monitoring

For those that progress, carrying safety risks into the clinic may......

- Lower start dose
- Slow recruitment, \uparrow exclusions and drop-out rates
- Extend program time, ↑ patient monitoring requirements (and cost)
- May limit exposure below efficacious range
- Regulatory delays and adverse labelling
- Decrease partner/Investigator interest
- Reduce competitiveness and asset value

De-risking toxicology:

- Target
 - Target safety assessment to define and mitigate risks
- Chemistry
 - Avoiding cardiovascular liabilities such as hERG
 - Early assessment of genetic toxicology
 - PK/PD profile
- Patient
 - Appropriate non-clinical safety package tailored to the needs of each project
 - Right patient population

Target Safety Assessment

	Typical content	
1	Executive summary	\square
2	Background	
	(aim, nomenclature, homology, distribution and expression, summary	L L
	of target biology, human mutation phenotype, transgenic mouse	
	phenotype)	
3	Potential safety risks (including nervous, respiratory, cardiovascular,	
	reproductive, liver, immune and gastrointestinal systems + other	\square
	relevant for the target)	
4	Competitor compounds [*]	\square
5	Suggested risk assessment plan (in silico, in vitro, in vivo and	
	biomarker including staging)	
6	Powerpoint presentation	\square
7	References	\square

Screening of early chemistry: where should we focus?

- Genetic toxicology
- A simple cytotoxicity assay
- Secondary Pharmacology (CEREP panel, Bowes et al. 2013)
- CV risk: designing out unwanted ion channel activity
 - hERG
 - CiPA
- For cause: de-risking predicted issues (failed projects, the target, the chemistry, competitor projects....)

Collaboration between all disciplines across all sectors:

- Facilitates data-driven assessment of risk-benefit in the context of each project
- Facilitates cost effective design and derisking of projects early while we still have choices
- Manages risks that cannot be avoided
- Delivers a cost and time-effective programme of nonclinical safety

For more information contact us

