Carbamazepine (CBZ) is an aromatic anticonvulsant known to cause drug hypersensitivity reactions, which range in severity from relatively mild maculopapular exanthema to potentially fatal Stevens-Johnson syndrome and toxic epidermal necrolysis (SJS-TEN). These reactions are known to be associated with human leukocyte antigen (HLA) class I alleles, and CBZ interacts preferentially with the related HLA proteins to activate CD8+ T-cells. This study aimed to evaluate the contribution of HLA class II in the effector mechanism(s) of CBZ hypersensitivity. CBZ-specific T-cells clones were generated from two healthy donors and two hypersensitive patients with high-risk HLA class I markers. Phenotype, function, HLA allele restriction, response pathways, and cross-reactivity of CBZ-specific T-cells were assessed using flow cytometry, proliferation analysis, enzyme-linked immunosorbent spot, and enzyme-linked immunosorbent assay. The association between HLA class II allele restriction and CBZ hypersensitivity was reviewed using Allele Frequency Net Database. Forty-four polyclonal CD4+ CBZ-specific T-cell clones were generated and found to be restricted to HLA-DR, particularly HLA-DRB1*07:01. This CD4+-mediated response proceeded through a direct pharmacological interaction between CBZ and HLA-DR molecules. Similar to the CD8+ response, CBZ-stimulated CD4+ clones secreted granulysin, a key mediator of SJS-TEN. Our database review revealed an association between HLA-DRB1*07:01 and CBZ-induced SJS-TEN. These findings implicate HLA class II antigen presentation as an additional pathogenic factor for CBZ hypersensitivity reactions. Both HLA class II molecules and drug-responsive CD4+ T-cells should be evaluated further to gain better insights into the pathogenesis of drug hypersensitivity reactions.